
Automatic Benchmark Generation

Adrien Mathieu Guillermo Polito∗

Benchmarking and testing share strong similarities in the techniques used,
yet, to the best of our knowledge fuzzing, hasn’t been use to automatically
detect performance issues, despite its proficiency in automatic bug detection.

We show that these techniques can indeed be adapted to automatically
generate interesting benchmark case, and, in doing so, we explore several
fuzzing variants. We also show how to take advantage of pure object-oriented
aspects of programming languages to solve common fuzzing pitfalls.

Introduction

Unit testing and benchmarking serve a similar purpose: to detect a regression of capa-
bilities of a given software. Indeed, they even share most of the techniques used (such
as coverage evaluation to assert the exhaustivity of the tests and benchmarks), and are
commonly ran together in the CI. However, testing techniques are not limited to unit
testing. For instance, a popular family of testing techniques, called fuzz testing [1],
consists in automatically generating inputs to actively try to find bugs [2], rather than
manually developing test cases. This allows discovering bugs that the developer has not
thought of while writing test cases. Yet, to the best of our knowledge, nobody has tried
fuzzing benchmark cases to actively seek for performance issues.

To this end, we explore how fuzzing techniques can be applied to automatic benchmark
generation. We find that input generation techniques similar to the one used for test
generation work reliably for our purposes too. However, we also find that there is a
significant difference in the detection of a performance bug, compared to a behavioral
bug. This is, in part, due to the very poor performance specifications given with a
program, not to say that there are usually none.

Besides the core fuzzing techniques, modern fuzzers collect feedback information dur-
ing an instrumented execution of the tested program. This allows them to reason about
the causality between the characteristics of the data fed into the program, and its be-
havior. For performance fuzzing, measuring the execution time is not enough to do the
same, because it is significantly affected by a lot of factors outside of the input of a
program. Instead we measure a more consistent proxy, the number of message sends, by
instrumenting the Pharo virtual machine (VM) itself.

∗Internship supervisor

1

Our contributions. To automatically generate inputs that exhibit poor performance
behavior, we have developed an automatic benchmark generation framework, Gnocco,
within the Pharo system. Given a program (or several programs, for a comparative
benchmark), and a grammar specifying its valid inputs (or a subset), it will setup the re-
quired instrumentation, then mutate the grammars until they generate interesting cases.
The mutation is performed under the guidance of one of the available metaheuristics
provided with the framework, which use the feedback collected during the execution of
the program on the generated inputs.

The implementation is modular: any metaheuristic can be plugged in to guide gener-
ation, so the user can easily fine-tune a provided metaheuristic, or even use a new one.
Besides, the guiding system is agnostic on the underlying metric. The one provided can
easily be replaced to make it match the definition of performance a user might want to
use.

1. Motivations

Let’s identify the key difficulties of automatic benchmark generation with an example,
in Pharo, a pure object-oriented programming language heavily inspired by Smalltalk.

0 0.5 1 1.5 2

·106

0

20

40

60

80

100

120

140

Number of objects serialized

T
im

e
(s

ec
on

ds
)

Fuel
STON

Figure 1: Benchmarks comparing STON and Fuel
performance

Pharo has several serializers in
its standard library, among which
are STON [3] and Fuel1. Fuel’s
aim is to provide fast serializa-
tion and deserialization target-
ing a compact, binary format.
On the other hand, STON tar-
gets a superset of JSON which
can encode arbitrary typed object
graphs. Their performance is ex-
pected to be linear, as can be seen
in Figure 1. Due to the different
provided feature set, Fuel is usu-
ally faster than STON.

Yet, an issue2 was reported by
some users witnessing an impor-
tant serialization speed decrease
when the size of the data they
were serialization was over a certain threshold. The results of a benchmark exhibiting
that issue are presented in Figure 2.

This issue is due to the fact that Fuel keeps instances of a common class that it has
already handled in a hash map, using the pointer equality for comparison, since two
structurally equal objects need to be serialized separately. The problem is that, since

1https://theseion.github.io/Fuel/
2https://github.com/theseion/Fuel/issues/269

2

https://theseion.github.io/Fuel/
https://github.com/theseion/Fuel/issues/269

Pharo’s garbage collector can freely move objects around at any time, the pointer itself
can only be used for equality, and not for hashing. To circumvent this, Pharo stores
22 bits of hash in each object’s header, which are used in place of the pointer value for
hashing. This means that the hash space is limited to 222 ≈ 4 · 106 values. Beyond that
number of objects, collisions become more and more common, making each access Fuel
does to its hash map very expensive.

0 0.2 0.4 0.6 0.8 1 1.2 1.4

·107

0

200

400

600

800

1,000

1,200

Number of objects serialized

T
im

e
(s

ec
on

ds
)

Fuel
STON

Figure 2: Benchmarks illustrating the performance is-
sue with a large number of similar objects

This example shows that per-
formance bugs can be challenging
to identify (the issue with iden-
tity hash maps has gone unno-
ticed for several years in Pharo,
despite identity hash maps be-
ing widely used). This is in
part due, like other bugs, to the
specificity of the conditions that
need to be fulfilled to exhibit the
bug. Since, for behavioral bugs,
fuzzing has been successfully ap-
plied for automatically creating
examples that meet conditions
that trigger bugs, we naturally in-
vestigate whether the same tech-
niques can be used to find perfor-
mance bugs.

Any improvement in the tools used to assist developers debugging a performance issue
can be very much impactful, as these bugs require more time to be solved than other
kind of bugs, and are usually assigned more experienced programmers, showing that they
are hard to fix [4].

2. Fuzzing benchmark cases

Fuzz testing is a testing technique that involves generating or mutating randomly inputs
to trigger unusual execution paths in a given program [1] [5] [6] [7]. To improve the
efficiency of fuzzing, input generation techniques have been improved, avoiding generating
inputs that are sufficiently invalid to make the program stop almost immediately. For
instance, generative grammars can be used to ensure the validity of the generated input,
in order to go further in the program execution than just its input validation step.

2.1. Generative grammar

Among the various techniques used by fuzzers to generate interesting input, we need one
that guarantees the validity of the generated input; otherwise, we waste computational
resources by having a generated input rejected by the validation step of the benchmarked
program.

3

To this end, we use generative grammars. The user defines a grammar which generates
a language of valid inputs (or picks among the provided grammars). The user also
provides some constraints about the size of the generated input. Then, our framework
uses that grammar to generate valid inputs.

To tweak the generation, and guide it towards interesting cases, each rule of the gram-
mar has an associated weight. When choosing a rule to expand a non-terminal, our
framework will take into account the relative weight of all the rules that can be applied,
taking into account the constraints. This allows a fine control about how much each rule
will be used, on average.

For instance, if we wanted to generate valid French mobile phone numbers, we would
do as follow

1 defineGrammar
2

3 ntPhoneNumber -->
4 ntStartBlock, ' ', ntBlock, ' ', ntBlock, ' ', ntBlock, ' ', ntBlock.
5 ntStartBlock --> '06' | '07'.
6 ntBlock --> ($0 - $9), ($0 - $9).
7

8 ^ ntPhoneNumber

which defines a grammar with three non-terminals, ntPhoneNumber, ntStartBlock and
ntBlock. ntPhoneNumber is marked as the starting non-terminal on the last line.

2.2. Graph generation

In pure object-oriented languages, data are typed object graphs. Instead of generating
input as strings, we could directly generate graphs of objects. The advantage is that
strings only work if the benchmarked program has a parser that converts string inputs
to their internal data representation. While this is usually the case for applications,
libraries usually expected data in some kind of internal representation, not text. Being
able to generate data in any kind of internal representation means that we are able to
benchmark specific components, saving computational resources.

A natural approach to object graph generation is to reuse our existing grammar-based
text generator, write the grammar of a graph description language, generate descriptions
of graphs, and then build the corresponding graphs.

To do so, we have targeted STON, a superset of JSON specifically designed to describe
object graphs. It permits object graphs with cycles (contrary to JSON which only pro-
duces forests of anonymous objects), as well as creating instances of specific classes. By
creating grammars that generate subsets of STON, one can easily create graphs that are
valid inputs of the benchmarked program.

4

3. Guided benchmark generation

While our input generation is very similar to how it works in other fuzzers, the detection
of performance bugs is significantly different from the detection of a behavioral bug.
Indeed, due to the lack of specifications for a software’s performance, we cannot decide
if a given execution of a program on a certain input reveals a performance issue or not.

To solve this issue, modern fuzzers come with an oracle that is able to distinguish
between sound executions and bug-exhibiting executions, and use it to guide generation
[8] [9]. These oracles, however are not designed to detect performance issues. We therefore
have to investigate the following questions

• how to detect a performance issue ?

• how to use feedback information as an oracle to guide generation?

3.1. Evaluating a score for each sample

Due to the lack of performance specifications, we avoid trying to classify executions
between those that exhibit performance issues, and those that don’t. Instead, we measure
how poorly has a certain execution gone, from a performance perspective. This allows
us to turn our problem into an optimization problem: we try to find the inputs that
make the program perform the worst. We then report it to the programmer, who judges
whether the found worst case should be optimized or not.

A natural metric for measuring performance is measuring the execution time of the
program. However, accurately measuring the execution time is hard because there is an
important amount of noise. This noise is due to several factors that are hard to control,
among which the hardware and the operating system, the other processes running in
parallel, the garbage collector, the JIT compiler and Pharo’s scheduler. This makes
time measurement very unstable (measuring the same execution has a lot of variance)
and harder to reproduce. This hinders feedback information because it leads to wrong
conclusions. The only way around is to repeat the measurements, to get statistically
significant results [10], but this is expensive, and doesn’t address systemic measurement
biases (such as the machine on which the experiments are run).

To avoid the aforementioned pitfalls, we have exploited the fact that, in pure OO
languages, most of the computation is done by sending messages. Indeed, the number of
message sends, in Pharo, is much more stable than the duration of the execution, yet very
strongly correlated with the average execution time and broadly machine-independent
[11].

In order to count the number of message sends without installing a full profiler, which
needs to wrap every method and is therefore very expensive, we modified the virtual ma-
chine3 to increase a global counter each time a method is called. Additionally, we added
a primitive to retrieve and reset that counter and, based on that, we provide a custom
profiler GncProfiler. On all the experiments that we have run, this instrumentation
incurred an overhead of at most 300%.

3https://github.com/jthulhu/pharo-vm/tree/feature/blop

5

https://github.com/jthulhu/pharo-vm/tree/feature/blop

From now on, whenever we mention counting the number of message sends, we im-
plicitly mean that they have been counted using our profiler. If the user provides two
programs to be comparatively benchmarked (for instance, two versions of the same soft-
ware, to find performance regressions), the computed score is the ratio between the
number of message sends. Otherwise, the score is simply the number of message sends.

3.2. Using feedback information for guidance

Because we only have access to a score for each sample, and not more fine-grained metrics,
we perform black-box feedback guiding using general-purpose optimization algorithms.
The metaheuristics we have used are simulated annealing and genetic optimization, where
the individuals are the grammars alongside the weights of their rules. Each grammar is
identical, but the weights are the parameters that the metaheuristic tweaks. A score
is associated to each individual by sampling it, that is, generating an input data, then
computing its score as described above.

3.2.1. Simulated annealing

One of the metaheuristic that we have implemented for our benchmarking framework is
simulated annealing [12] [13]. The idea is to start with a randomly generated grammar,
then mutate it slightly (here, we mutate one of its parameters at random). If the newly
created individual is better than the original one, then it becomes the current individ-
ual, as in a regular hill climbing algorithm. Otherwise, we choose between the original
individual and the mutated version. The probability for the younger individual to be
chosen depends on how much worse it is with respect to the previous individual, and
on the temperature, which is an additional parameter of the algorithm. The higher the
temperature, the higher the probability to switch to the younger individual, even if it is
worse. This means that, at higher temperatures, it is easier to escape local maxima. On
the other hand, at higher temperatures, the algorithm won’t converge towards a good
solution. For this reason, the temperature is progressively lowered.

There are many possible variations on this schema, including choosing how and when
to decrease the temperature, an initial choice of temperature, and the actual probability
formula. In our implementation, the temperature follows an inverse law 𝑇 = 𝑇0

𝑡 , where
𝑇0 is the initial temperature and 𝑡 represents the advancement of the algorithm. The
probability for transitioning to a worse individual is an exponential law 𝑒

Δ
𝑇 , where ∆

is the score difference. The initial temperature is left as a parameter dependent on the
actual program we want to benchmark.

3.2.2. Genetic optimization

The other metaheuristic available in our benchmarking framework is genetic optimization,
which is also the metaheuristic used by AFL [14], a fuzzer that has successfully found a
very high number of critical bugs [15].

The core idea of genetic optimization is to keep a diverse population of individuals,
that is incrementally improved by combining the individuals to produce new individuals.

6

The size of the population being fixed, the newly produced individuals replace the old
individuals, creating a new generation.

To combine two (or more) individuals to create an offspring, genetic optimization
algorithms rely on two mechanisms: mutation (a parameter is randomly assigned to a
new value), and crossover (a parameter or a sequence of parameters in the offspring is
copied from either parents, at random).

Based on this scheme, several different implementations exist. We have hand tuned
our implementation by testing it on a toy problem that is meant to be easily solved
by genetic optimization algorithms. In this problem, individuals are fixed-length string.
Their score is the number of indices where they match a predetermined string. The goal
is to find that string, by trying to find a string that maximizes its score. This lead us to
the following implementation:

• the population has a fixed size of 100;

• at each generation, the 10% fittest (with highest score) individuals are passed to
the next generation as-is;

• the rest of the new population is filled by sequentially choosing two parents among
the 50% fittest individuals, and combining them;

• when two parents are combined, each parameter of the offspring is either randomly
chosen from a parent, or is assigned a random value.

4. Experimentation

In this section, we are going to compare several approaches to fuzz benchmarking. We
are going to assess whether fuzzing can be used to find performance bugs, and how much
guiding can improve naive random fuzzing. To do so, we are going to compare two
regular expression engines, matching simple regular expressions on the smallest string
they actually match. The first regex engine is the one from Pharo’s standard library, and
uses a backtracking algorithm, which is relatively fast in general, but has an exponential
complexity in the worst case. The second regex engine is one we developed for the
experience. It uses Thompson’s construction to build a non-deterministic finite automata
with 𝜀-transitions [16]. It then does on-the-fly simulation of the powerset algorithm to
match the regular expression. This algorithm has a linear complexity.

For each regular expression 𝑟, we will compute a score 𝑠𝑟 for that regular expression.
That score is defined as

𝑠𝑟,𝑏
𝑠𝑟,𝑎

, where 𝑠𝑟,𝑏 is the number of sent messages matching 𝑟 on

the smallest string it matches, using the backtracking algorithm, and 𝑠𝑟,𝑎 is the same but
using the automata algorithm.

Furthermore, since we want to identify regular expressions that exhibit a bug, we are
going to consider a threshold regular expression: it’s a handcrafted regular expression,
which has been specifically thought has an example of poor performance for backtracking
algorithm: 𝑎?𝑛𝑎𝑛 [17]. For our purposes, we are going to consider regular expressions of

7

size at most 40, so the threshold regular expression is 𝑟𝑡 := 𝑎?14𝑎14. We will consider that
a regular expression 𝑟 reveals a performance bug if its score 𝑠𝑟 is greater or equal to the
threshold score 𝑠𝑟𝑡 = 159. Indeed, that would mean that we found a regular expression
that makes the regex engine perform worse than the purposefully handcrafted one.

Furthermore, we assume that we have a computational budget of 10000 samples, which
means that we imagine that a programmer trying to find bugs would let our infrastructure
try 10000 samples (which takes between 10 and 20 seconds on our machine): if a bug is
not found within that computational budget, then (for this experiment) we consider that
finding a bug is too expensive, and therefore that we have failed at finding one. Hence,
for each technique, we will run 30 independent batches of 10000 samples each. Then, we
will analyze three aspects of these batches:

• Consistency. How often is a bug revealed? This is ratio of batches which have
produced at least an example which exhibits a bug over total number of batches.

• Specificity. How well do the examples that exhibit a bug specifically exhibit the
behavior that leads to poor performance? We assume that a higher score means an
input that highlights better what kind of input triggers a performance issue. For
someone trying to find such a bug, an input where only half of it is relevant is less
interesting than an input whose components are all relevant in triggering the bug.

• Inevitability. For the batches that have failed, did they fail because the meta-
heuristic did not converge fast enough towards a bug (and therefore if we increased
the computational budget, we would have found the bug eventually), or did the
technique completely miss the bug? This is a qualitative criteria.

We will not analyze the diversity of the batches, because in our simple example we expect
that the implementation algorithm will outweigh any other performance issue; on real
programs, however, we expect that several performance bugs coexist, and therefore a
technique that finds diverse bug-exhibiting examples might actually find more than a
single bug per batch.

4.1. Unguided generation

A first approach is to define a grammar of the wanted input, generate lots of inputs,
and check there are any outliers. The first research on fuzzing started with completely
random input generation [1].

4.1.1. Experimentation results

Figure 3 shows the score of the best individual of each batch. The maximum score
reached is about 360, and the second best is 140.

8

0 100 200 300 400
0

5

10

15

17

7

1
2 2

1

Score (higher is better)
N

um
be

r
of

ba
tc

he
s

Figure 3: Score distribution of the best examples
in each batch

Consistency. This means that ex-
actly one of these 30 runs successfully
identified a performance bug, accord-
ing to our criteria. While this indi-
cates that fuzzing can be used to find
performance bugs, even without any
guidance, the consistency of this tech-
nique is very low.

Specificity. The only example that
exhibits a performance issue, however,
has a score that is more than twice the
threshold, so it is more specific than
the handcrafted example.

Inevitability. Finally, since running
30 batches of 10000 samples each is
the same as running a single batch of 300000 samples, each batch will likely eventually
discover a performance bug. If the input space were much bigger, however, the time it
would take to eventually discover a bug might become prohibitive.

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1
·104
9,266

636
64 19 8 5 1 1

Score (higher is better)

N
um

be
r

of
sa

m
pl

es

Figure 4: Typical score distribution of an un-
guided generated batch

An issue with this approach is re-
vealed by taking a look at how the
score distribution of the sampled reg-
ular expressions, which can be seen
in Figure 4. Approximately 90% of
them are within a factor two of the
other. A smaller fraction (9%) of reg-
ular expressions are matched between
5 and 15 times faster by our imple-
mentation. The remaining 0.34% of
the cases are outliers that perform sig-
nificantly better with our implemen-
tation.

4.2. Simulated annealing

The analysis above shows that, de-
spite being able to find some inter-
esting outliers, we spend of our time
generating samples that are uninteresting, without reusing information we gained about
them. Instead, at each sample generation, we could use information gained in previous
iterations to guide the generation. This is typically what simulated annealing does.

9

4.2.1. Simulated annealing results

In Figure 5 are shown the results of the experiment, with different initial temperatures
Each boxplot corresponds to the aggregation of the best score of 30 runs, each testing
at most 10000 regular expressions. The first boxplot, in blue, show, for comparison,
the data collected by unguided random sampling, presented in the same way to ease
comparison.

Specificity. With initial temperatures under 40000, our runner finds an example which
runs significantly slower in Pharo’s implementation. Above that temperature, in the
worse case it fails to find a performance issue, on the contrary to random sampling which
consistently finds examples which run at least 12 times slower on Pharo’s implementation.

101 102 103 104 105

100

101

102

103

104

105

Initial temperature 𝑇0

Sc
or

e
(h

ig
he

r
is

be
tt

er
)

Unguided
SA guided

Figure 5: Simulated annealing results, by initial
temperature 𝑇0

However, we also note that the sim-
ulated annealing has more widespread
results. Even at higher tempera-
tures, some outliers give better re-
sults than random sampling. At
the initial temperatures that over-
all seem to perform better (between
5000 and 20000), some outliers are
over five order of magnitudes slower
in Pharo’s implementation, with the
peak being at 228043. This means
that simulated annealing has a much
higher specificity than random sam-
pling. An example of a very spe-
cific regular expression generated with
this method, that has a score over
160000 is b*((b|(b|b|b)))+b+(b)
*b+b+b+b+b+(bb+b+)+.

Consistency. Furthermore, the batch with the best initial temperature (𝑇0 = 5000)
successfully finds a performance bug 14 times out of 30. It is significantly more consistent
than random sampling.

Inevitability. For higher initial temperatures, however, the big problem is inevitability:
for 𝑇0 = 100000, 9 out of 30 executions fail to converge to an example that has a score
greater than 1, that is, an example that runs faster on our implementation! The initial
temperature is too high, and therefore we would have to wait too long to eventually find
a useful example.

10

4.2.2. Discussion

We think that the instability of the simulated annealing is due to a difficulty of getting
out of local maxima. Indeed, when the execution is “lucky enough” not to get in a local
maxima, or it manages to get out, with a reasonable initial temperature, it reaches very
good solutions, but on a significant number of batches it performs worse than random
sampling because it gets stuck. Since simulated annealing’s purpose is to avoid getting
stuck in local maxima, we believe that a finer tuning of our work would greatly improve
consistency.

4.3. Genetic optimization guiding

One of the defects of the previous approach is that it lacks diversity. If the initial solution
is unlucky and gets stuck in a pretty bad local maximum, then the whole run will most
likely not result in an interesting finding. A metaheuristic that is less affected by this
problem is genetic optimization, because it starts with hundreds of different individuals,
and at each step the parameters can be scrambled much more. For each batch, after
generating 100 random individuals, we run for 100 generations.

4.3.1. Genetic optimization results

101

102

103

104

105

106

Sc
or

e
(h

ig
he

r
is

be
tt

er
)

Unguided SA guided (𝑇0 = 5000)
GO guided

Figure 6: Genetic optimization results

In Figure 6, the GO guided sam-
ples are compared with the un-
guided ones, and with the best
SA guided samples.

Consistency. First of all, we see
that, indeed, this method is more
consistent than random results:
25 runs out of 30 have success-
fully detected a bug, according to
our initial criteria, so it is even
more consistent than simulated
annealing.

Specificity. However, this is not
the only improvement. As can
be seen on Figure 6, genetic opti-
mization guidance seems to pro-
duce more specific samples, with a peak example, (a|a|a|a|a|a|c)+a?a+.(a)+(a+a+a+
(a)+a)b, whose score is over 1.1 · 106!

Inevitability. Finally, genetic optimization’s worst results are above the best results of
random generation (without taking into account the outliers), meaning that it is very

11

likely that with a little more computational budget, even those batches would have caught
up.

We believe that genetic optimization outperforming simulated annealing in our exper-
iments is partly due to the finer tuning our GO framework has been through, and partly
due to the fact that our currently implementation of genetic optimization keeps more
diversity among its samples.

5. Conclusion

Figure 7: Comparison of the provided metaheuristics

Guidance Consistency Specificity4

Unguided 1/30 2.3
SA (𝑇0 = 100) 5/30 2.7

SA (𝑇0 = 1000) 6/30 4.2
SA (𝑇0 = 5000) 14/30 1434

SA (𝑇0 = 10000) 12/30 27.4
SA (𝑇0 = 20000) 10/30 29.2
SA (𝑇0 = 40000) 10/30 7.8
SA (𝑇0 = 60000) 5/30 60.3

SA (𝑇0 = 100000) 3/30 5.4
Genetic Optimization 25/30 7280

We explore whether fuzzing tech-
niques can be applied for au-
tomatic benchmark generation,
based on the insight that auto-
matic benchmark generation and
test generation are similar prob-
lems, and that fuzzing is a known
proficient solution for the latter.
We show that input generations
techniques can be transposed di-
rectly to benchmark generation,
but the feedback collection step,
that allows guiding of the input
generation, is significantly different.

We provide a framework for automatic benchmark generation based on a general-
purpose grammar-based data generator. This generator can be directed towards certain
input, and is agnostic of the metaheuristic used for this guiding. Furthermore, we also
provide two hand tuned metaheuristic that can simply be plugged in to guide the input
generation based on certain metrics, but they also are agnostic on the underlying metric.
Finally, we provide a VM-level instrumentation to measure efficiently a reliable proxy for
execution time.

A summary of the results of the experiment we have conducted are shown in Figure 7.
In our setup, simulated annealing performs better than no guidance at all for some
initial temperatures, and genetic optimization outperforms simulated annealing and no
guidance.

In the future, other metrics (such as code coverage, execution trace coverage, memory
usage, number of allocations) could also be measured in place of execution time, and
other metaheuristics could be implemented. Besides, rather than using black-box fuzzing
techniques, one could use symbolic or concolic execution to target specific code spans,
which is particularly useful in case we want to ensure a given patch doesn’t introduce
regressions.

4Ratio between the best score 𝑠𝑟 and the threshold score 𝑠𝑟𝑡 .

12

Appendix

A. Regular expression grammar

For the sake of simplicity, we define a grammar generating a sufficiently powerful subset
of regular expressions, which includes characters, the wildcard pattern match ., con-
catenation, alternative | and grouping, in addition to usual modifiers such as +, * and
?.

Originally, the grammar was the following.

1 defineGrammar
2

3 ntRegex --> ntConcat | ntConcat, '|', ntRegex.
4 ntConcat --> ntModifier | ntModifier, ntConcat.
5 ntModifier --> ntAtom
6 | ntAtom, '?'
7 | ntAtom, '*'
8 | ntAtom, '+'.
9 ntAtom --> 'a' | 'b' | 'c' | '.' | '(', ntRegex, ')'.

10

11 ^ ntRegex

However, this didn’t work well because Pharo’s implementation does not support ap-
plying modifiers to regular expressions that can match the empty string. Luckily enough,
context-free grammars are powerful enough to describe regular expressions that do not
match the empty string, at the cost of being a little bit more verbose.

1 defineGrammar
2

3 ntRegex --> ntConcat | ntConcat, '|', ntRegex.
4 ntConcat --> ntModifier | ntModifier, ntConcat.
5 ntModifier --> ntAtom
6 | ntNonEmptyAtom, '?'
7 | ntNonEmptyAtom, '*'
8 | ntNonEmptyAtom, '+'.
9 ntAtom --> 'a' | 'b' | 'c' | '.' | '(', ntRegex, ')'.

10 ntNonEmptyAtom --> 'a' | 'b' | 'c' | '(', ntNonEmptyRegex, ')'.
11 ntNonEmptyRegex --> ntNonEmptyConcat
12 | ntNonEmptyConcat, '|', ntNonEmptyRegex.
13 ntNonEmptyConcat --> ntNonEmptyAtom
14 | ntNonEmptyAtom, ntConcat
15 | ntModifier, ntNonEmptyConcat.
16 ^ ntRegex

13

References

[1] B. P. Miller, L. Fredriksen, and B. So, “An empirical study of the reliability of
UNIX utilities,” vol. 33, no. 12, pp. 32–44, Dec. 1, 1990.

[2] B. Miller, D. Koski, C. Lee, et al., “Fuzz Revisited: A Re-Examination of the
Reliability of UNIX Utilities and Services,” Jan. 1, 1998.

[3] S. Van Caekenberghe. “Smalltalk Object Notation (STON).” (Feb. 14, 2012), [On-
line]. Available: https://github.com/svenvc/ston/blob/master/ston-paper.
md (visited on 07/21/2023).

[4] S. Zaman, B. Adams, and A. E. Hassan, “A qualitative study on performance bugs,”
Jun. 2012, pp. 199–208.

[5] K. V. Hanford, “Automatic generation of test cases,” vol. 9, no. 4, pp. 242–257,
1970.

[6] P. Purdom, “A sentence generator for testing parsers,” vol. 12, no. 3, pp. 366–375,
Sep. 1, 1972.

[7] W. H. Burkhardt, “Generating test programs from syntax,” vol. 2, no. 1, pp. 53–73,
Mar. 1, 1967.

[8] M. Böhme, V.-T. Pham, M.-D. Nguyen, and A. Roychoudhury, “Directed Greybox
Fuzzing,” Dallas Texas USA: ACM, Oct. 30, 2017, pp. 2329–2344.

[9] M. Christakis, P. Müller, and V. Wüstholz, “Guiding dynamic symbolic execution
toward unverified program executions,” Austin Texas: ACM, May 14, 2016, pp. 144–
155.

[10] A. Georges, D. Buytaert, and L. Eeckhout, “Statistically Rigorous Java Perfor-
mance Evaluation,”

[11] A. Bergel, “Counting Messages as a Proxy for Average Execution Time in Pharo,”
in M. Mezini, Ed., vol. 6813, Berlin, Heidelberg: Springer Berlin Heidelberg, 2011,
pp. 533–557.

[12] M. Pincus, “Letter to the Editor—A Monte Carlo Method for the Approximate
Solution of Certain Types of Constrained Optimization Problems,” vol. 18, no. 6,
pp. 1225–1228, Dec. 1970.

[13] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by Simulated An-
nealing,” vol. 220, no. 4598, pp. 671–680, May 13, 1983.

[14] M. Zalewski. “American Fuzzy Lop.” (Nov. 12, 2013), [Online]. Available: https:
//lcamtuf.coredump.cx/afl/ (visited on 07/26/2023).

[15] M. Zalewski. “Bugs found by AFL.” (), [Online]. Available: https://lcamtuf.
coredump.cx/afl/#bugs (visited on 07/28/2023).

[16] K. Thompson, “Programming Techniques: Regular expression search algorithm,”
vol. 11, no. 6, pp. 419–422, Jun. 1, 1968.

14

https://github.com/svenvc/ston/blob/master/ston-paper.md
https://github.com/svenvc/ston/blob/master/ston-paper.md
https://lcamtuf.coredump.cx/afl/
https://lcamtuf.coredump.cx/afl/
https://lcamtuf.coredump.cx/afl/#bugs
https://lcamtuf.coredump.cx/afl/#bugs

[17] R. Cox. “Regular Expression Matching Can Be Simple And Fast.” (Jan. 2007),
[Online]. Available: https://swtch.com/~rsc/regexp/regexp1.html (visited on
07/26/2023).

15

https://swtch.com/~rsc/regexp/regexp1.html

	Motivations
	Fuzzing benchmark cases
	Generative grammar
	Graph generation

	Guided benchmark generation
	Evaluating a score for each sample
	Using feedback information for guidance
	Simulated annealing
	Genetic optimization

	Experimentation
	Unguided generation
	Experimentation results

	Simulated annealing
	Simulated annealing results
	Discussion

	Genetic optimization guiding
	Genetic optimization results

	Conclusion
	Regular expression grammar

