
Approximate Streaming Regular Pattern
Matching
Adrien Mathieu

February 29, 2024

The goal of the internship is to generalize the algorithm that solves the streaming
regular pattern matching problem from [Dud+22] (which we will call the base article),
by searching for approximate matches.

The result of the internship is an algorithm that works if we allow one mismatch,
although its time complexity is far from ideal. Part of this solution has been formalized;
the rest of the solution has been checked in details, but hasn’t been properly written.
Besides this

• a minor technical problem has been identified and patched in the base article;

• a an idea for improving the time complexity of the algorithm presented in the base
article has been discussed, but not formalized.

Problem Statement
The problem we are trying to generalize is that of regular pattern matching, where,
given a regular expression (the pattern) and a string (the text), we want to know which
positions of the text that end substrings which matches the pattern.

Definition 1 (Streaming model). The streaming model is akin to the usual RAM-word
model, except that the text is fed to the algorithm letter by letter, and the algorithm has
no access to any character of the text but the one it is currently being presented. This
means that any additional character that the algorithm wishes to remember has to be
counted in its space complexity.

Additionally, before receiving the first character of the text, the algorithm is receives
the pattern and is free to do any amount of precomputations.

The algorithm should answer whether there is a match ending at the character that is
currently being provided to it before seeing the next character. The time complexity is
expressed per character.

Since it takes a linear space complexity to simply store all the information seen so
far, we aim at a sublinear space complexity (otherwise the algorithm has the same space

1



complexity as in the read-only model), both in the size of the text and in the size of the
pattern.

The algorithm from the base article solves the streaming regular pattern matching
problem. We aim at generalizing the problem further by searching for substrings of
the text that are at Hamming distance at most 𝑘 from a string that is matched by the
pattern, where 𝑘 is also a parameter of the problem. We provide here a solution for the
case 𝑘 = 1, which is heavily based on the exact algorithm.

Solution overview
Given a regular expression 𝑅, we build a non-deterministic automaton that recognized
the same language, and has the following property: every node either has any number of
outgoing 𝜀-transitions, or has exactly one outgoing transition labeled with a character.
We therefore think of the nodes linked together by a transition labeled with a character
has a single, atomic string. For instance, the automaton for the regular expression
ab(acb|bcba)ac is

a b

b c b a

a c b

a c

Figure 1: Automaton of the regex ab(acb|bcba)ac

where only the 𝜀-transitions are represented. The four atomic strings of this regular
expression are ab, acb, bcba and ac.

Definition 2 (Preceding atomic string). We say that an atomic string 𝐴 precedes an
other atomic string 𝐵 (or a prefix of 𝐵) if there is a path labeled only by 𝜀-transitions
from the end of 𝐴 to the beginning of 𝐵 in the automaton.

Example 3. In Figure 1, the atomic string acb and bcba both precede ac, but not ab.

The solution of the base paper is built upon a subroutine that simply solves the
streaming pattern matching problem (that is, that finds occurrences of a string rather
than matches of a regular expression in a streaming fashion), by stitching together the
information about occurrences of the atomic strings.

Our solution uses a similar subroutine, but that finds approximate occurrences. We
adapt the exact algorithm from the base paper to work with approximate occurrences
rather than exact ones. Most of the invariants in the said article hold (modulo minor
modifications) except for a single corner case, for which we have only recovered a
workaround in the case 𝑘 = 1. Hence be believe that our strategy could be improved to
work for any 𝑘.

2



The general strategy of our algorithm is the same as in the base algorithm. We will
present here the differences.

1. Finding and Storing Occurrences
Instead of finding exact matches for the canonical prefixes, we can use an approximate
equivalent (such as presented in [CKP] or [BK23]).

A key insight used for the exact algorithm, used to handle the case of periodic strings,
is [Dud+22, Observation 3.7], which states

Observation 4 (stems from [FW65]). Let 𝑃 and 𝑋 be two strings, with |𝑋| ≤ 2|𝑃 |. If
𝑃 has at least three occurrences in 𝑋, then 𝑃 must be periodic and the set of occurrences
of 𝑃 in 𝑋 forms an arithmetic progression with difference 𝜌, where 𝜌 is the period of 𝑃 .

we replace this result with an approximate counterpart

Observation 5 (Theorem 3.1 and Theorem 3.2, from [CKW20]). Let 𝑃 and 𝑋 be two
strings, with |𝑋| ≤ 2|𝑃 |, and 𝑘 ∈ N*. If there at least 1152𝑘 + 1 𝑘-mismatch occurrences
of 𝑃 in 𝑋, then these occurrences form at most 6𝑘 distinct arithmetic progressions, with
step 𝜌 where 𝜌 is a number that depends only on 𝑃 .

While we search for approximate occurrences of periods of periodic canonical prefixes,
we only exact streaks. When we find an occurrence of a period with a mismatch ending
a streak, we continue the streak for a small number of periods, but in parallel we start a
new streak. All the mismatches in a streak of 𝑃 can only be within |𝑃 | characters of the
end of the streak.

2. Storing and Finding Witnesses
Given a periodic canonical prefix 𝑃 , and a streak 𝑆 of Δ(𝑃 ), its compact representation
of witnesses is similar to that of the base algorithm, except for witnesses of canonical
prefixes 𝑄 which overlap 𝑆, and such that both halves 𝑄1 and 𝑄2 of 𝑄 are periodic, with
the same period as 𝑃 . In this case, we store:

• all occurrences of 𝑄2 that make 𝑄 overlap with 𝑆 (they form arithmetic progres-
sions);

• an (exact) streak for occurrences of 𝑄1 that make 𝑄 overlap with 𝑆.

This is important because, unlike in the exact case, there can be more than a single
overlapping occurrence per canonical prefix for a given streak. The edge case we have
distinguished above is the only one where there can be an unbounded number of such
occurrences.

Since, for each witness, we also store the number of mismatches in its partial match, we
need to update the procedure to find witnesses: if 𝑟 is an occurrence of a canonical prefix
𝑃 with 𝑘1 mismatches, and if there is a witness 𝑟′ of a preceding atomic string of 𝑃 with

3



𝑘2 mismatches, such that 𝑘1 +𝑘2 ≤ 𝑘, such that 𝑟′ + |𝑃 | = 𝑟, then 𝑟 is a 𝑘1 +𝑘2-mismatch
witness of 𝑃 . This is very similar to the way the base algorithm works for finding whether
an occurrence is a witness. The only difference is due to the aforementioned difference in
the compact representation of witnesses. There is a single edge case where the witness
we need is stored in this different form:

• the witness we look for is of a canonical prefix 𝑄 = 𝑄1𝑄2;

• there is a mismatch between 𝑄2 and the streak;

• 𝑄1 and 𝑄2 are both periodic, with the same period as the streak;

• the witness of 𝑄 is overlapping with the streak.

To cover this case, we

• iterate over all overlapping occurrences of 𝑄2 (we have stored their arithmetic
progression);

• check, using the streak of 𝑄1, whether that occurrence of 𝑄2 is a witness;

• check, if that occurrence is a witness, whether it makes the current occurrence a
witness.

3. Streak Queries
The streak queries in the base algorithm rely on the following theorem to be implemented
efficiently:

Theorem 6 ([Dud+22, Theorem 2.8]). There exists an algorithm which, given a directed
multigraph 𝐺 with non-negative integer weights on edges, its two nodes 𝑣1 and 𝑣2 and
a number 𝑥, decides if there is a walk from 𝑣1 to 𝑣2 of total weight 𝑥 in 𝒪((|𝐸(𝐺| +
|𝑉 (𝐺)|3)𝑥 polylog 𝑥) time and 𝒪((|𝐸(𝐺) + |𝑉 (𝐺)|3) polylog 𝑥) space, and succeeds with
probability at least 1/2.

We replace it with the following generalization, whose proof is given in the Appendix A.

Theorem 7. There exists an algorithm which, given a directed multigraph 𝐺, a weight
function 𝑤 : 𝐸(𝐺) → N, a cost function 𝑐 : 𝐸(𝐺) → N, to nodes 𝑠 and 𝑡, a target weight
𝑤̃ ∈ N and a target cost 𝑐 ∈ N such that 𝑤̃ = Ω(𝑐), decides whether there is a walk 𝑝 from
𝑠 to 𝑡 in 𝐺 such that 𝑤(𝑝) = 𝑤̃ and 𝑐(𝑝) = 𝑐 in 𝒪(|𝑉 (𝐺)|2 · (|𝐸(𝐺) + |𝑉 (𝐺)|3|) · 𝑤̃𝑐2 ·
polylog(𝑤̃, 𝑐)) time and 𝒪((|𝐸(𝐺)| + |𝑉 (𝐺)|3)𝑐2 polylog 𝑤̃) space with probability at least
1/2.

This allows us to constraint the number of mismatches in our queries, in addition to the
distance between the witness and the occurrence.

4



4. Other Work
We report here tangential work that has been carried out during the internship.

4.1. Minor problem in the base article
The algorithm described in the base article did not distinguish identical atomic strings
that appeared several times in the regular expression, leading to false-positives. For
instance, for the automaton shown in Figure 2, after having read 𝐴𝐵, the algorithm
would store a witness for 𝐵, and therefore after having read 𝐴𝐵𝐷, the algorithm would
(most likely) report a match, even though 𝐴𝐵𝐷 is not actually a walk from the start of
the automaton to the end of 𝐷.

𝜀
𝐴 𝜀 𝐵

𝜀 𝐶 𝜀 𝐵 𝜀 𝐷

Figure 2: Automaton illustrating the bug in the base article

The patch for this bug is relatively straightforward: the representation of a canonical
prefix also contains its ending node in the automaton, so that two occurrences of a
canonical prefix in the automaton can be distinguished. Then, when considering preceding
canonical prefixes, we only consider those that actually correspond to a preceding node
in the automaton.

4.2. Improving the time complexity of the base algorithm
The running time of the base algorithm is 𝒪̃(𝑛𝑑5) per character. The 𝑛 factor is due
to a single subroutine of the algorithm: the one which, given a streak, a witness at the
beginning of the streak, and an occurrence toward the end of the streak, returns whether
that occurrence is a witness considering only the given witness as a starting point. The
time complexity of that query is proportional to the distance between the witness and
the occurrence given as arguments, which is itself (at most) the size of the streak. Since
a streak might run for the whole text, the time complexity of this subroutine is 𝒪̃(𝑛).

Two ideas have been mentioned to improve this:

• regularly update the witnesses that are remembered in a streak, so that instead of
being at the beginning of the streak, the are not too far from its end;

• truncate the streaks after a certain size, and remember more, shorter streaks.

If done properly, both ideas should lead to a distance between the witnesses and the
occurrence that is bounded by the size of the canonical prefix of which it is the streak we
are considering. All in all, this means turning the factor 𝑛 into 𝑚, which is good because
we expect 𝑚 to be much smaller than 𝑛 (even though this complexity is still not tight).

5



References
[BK23] Sudatta Bhattacharya and Michal Koucký. “Streaming K-Edit Approximate

Pattern Matching via String Decomposition”. In: ed. by Kousha Etessami,
Uriel Feige, and Gabriele Puppis. Vol. 261. Leibniz International Proceedings
in Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl Leibniz-
Zentrum für Informatik, 2023, 22:1–22:14. isbn: 978-3-95977-278-5. doi:
10.4230/LIPIcs.ICALP.2023.22.

[CKP] Raphael Clifford, Tomasz Kociumaka, and Ely Porat. “The Streaming K-
Mismatch Problem”. In: pp. 1106–1125. url: https://epubs.siam.org/
doi/abs/10.1137/1.9781611975482.68.

[CKW20] Panagiotis Charalampopoulos, Tomasz Kociumaka, and Philip Wellnitz.
“Faster Approximate Pattern Matching: A Unified Approach”. In: Nov. 2020,
pp. 978–989. doi: 10.1109/FOCS46700.2020.00095.

[Dud+22] Bartomiej Dudek, Pawe Gawrychowski, Garance Gourdel, and Tatiana
Starikovskaya. “Streaming Regular Expression Membership and Pattern
Matching”. In: Proceedings. Society for Industrial and Applied Mathematics,
Jan. 2022, pp. 670–694. doi: 10.1137/1.9781611977073.30.

[FW65] N. J. Fine and H. S. Wilf. “Uniqueness Theorems for Periodic Functions”. In:
16.1 (1965), pp. 109–114. issn: 0002-9939. doi: 10.2307/2034009. JSTOR:
2034009.

6

https://doi.org/10.4230/LIPIcs.ICALP.2023.22
https://epubs.siam.org/doi/abs/10.1137/1.9781611975482.68
https://epubs.siam.org/doi/abs/10.1137/1.9781611975482.68
https://doi.org/10.1109/FOCS46700.2020.00095
https://doi.org/10.1137/1.9781611977073.30
https://doi.org/10.2307/2034009
http://www.jstor.org/stable/2034009


Appendix

A. Proof of Graph Subroutine Theorem
Recall the following facts:

Fact 8 (cf. [Dud+22, Theorem 5.2]). There exists an algorithm which, given 𝑦 ∈ N,
finds in 𝒪(𝑦 polylog 𝑦) time and 𝒪(log 𝑦) space a prime 𝑝 ∈ P and an 𝜔 ∈ F𝑝 such that,
for any 𝑁 = 2𝒪(𝑦 log 𝑦), with probability at least 1/2, we have:

1. there exists a 𝑡, such that 𝑦 ≤ 𝑡 = 𝒪(𝑦 polylog 𝑦) and 𝜔 is a 𝑡-th root of the unity
in F𝑝;

2. 𝑝 = 𝒪(𝑦2 polylog 𝑦);

3. 𝑝 - 𝑁 .

Fact 9 (cf. [Dud+22, Theorem 5.1]). Let 𝑝 ∈ P a prime, 𝑡 ≥ 1 and 𝜔 ∈ F𝑝 a 𝑡-th root
of the unity in F𝑝. Let 𝐶 be a circuit over F𝑡

𝑝, with convolution and addition gates, and
singleton inputs (that is, every input node of 𝐶 has at most one nonzero entry), which
outputs out 𝐶 ∈ F𝑡

𝑝 without overflowing.
Given 𝑥 ∈ [𝑡−1], (out 𝐶)[𝑥] can be computed in 𝒪(|𝐶|𝑡 polylog 𝑝) time and 𝒪(|𝐶| log 𝑝)

space.

We will now prove Theorem 7.

Proof of Theorem 7. We note [𝑛] = {0, . . . , 𝑛} for 𝑛 ∈ N. We say that a walk 𝑝 is a
(𝑑, 𝑙)-walk if its weight is 𝑑 and if its cost is 𝑙.

Small 𝑤̃ For this first case, assume 𝑤̃ ≤ |𝑉 (𝐺)|. Let us compute arrays 𝐶𝑛 for
𝑛 = 0, . . . , ⌈ log 𝑤̃⌉, indexed by nodes 𝑢, 𝑣 ∈ 𝑉 (𝐺) and 𝑙 ∈ [𝑐] where 𝐶𝑛[𝑢, 𝑣, 𝑙] is a
bit-vector of length 𝑤̃ + 1 such that:

1. 𝐶𝑛[𝑢, 𝑣, 𝑙][𝑑] = 1 implies that there exists a walk of weight (𝑑, 𝑙) from 𝑢 to 𝑣;

2. for every 𝑑 ≤ 2𝑛, if there exists a walk of weight (𝑑, 𝑙) from 𝑢 to 𝑣 in 𝐺, we have
𝐶𝑛[𝑢, 𝑣, 𝑙][𝑑] = 1.

We define the (or, Convolution𝑥)-product ⊙ of multidimensional arrays if bit vectors,
truncated after the first 𝑤̃ + 1 bits: for any 𝑢, 𝑣 ∈ 𝑉 (𝐺), 𝑙 ∈ [𝑐], 𝑑 ∈ [𝑤̃],

(𝐴 ⊙ 𝐵)[𝑢, 𝑣, 𝑙][𝑑] =
⋁︁

𝑤∈𝑉 (𝐺)
𝑖∈{0,...,𝑑}
𝑗∈{0,...,𝑙}

𝐴[𝑢, 𝑤, 𝑗][𝑖] ∧ 𝐵[𝑤, 𝑣, 𝑙 − 𝑗][𝑑 − 𝑖]

Once we have computed 𝐶0, we can compute inductively 𝐶𝑛 with

𝐶𝑛+1 := 𝐶𝑛 ⊙ 𝐶0 ⊙ 𝐶𝑛

7



Lemma 10. For any (non-empty) path 𝑝 = 𝑒0 . . . 𝑒𝑟, there exists an edge 𝑒𝑛 such that
the paths 𝑝1 := 𝑒0 . . . 𝑒𝑛−1 and 𝑝2 := 𝑒𝑛+1 . . . 𝑒𝑟 have weight at most 𝑤(𝑝)

2 .

𝑢

𝑥 𝑦

𝑣

𝑝1
𝑒

𝑝2

Proof. Consider 𝑝1 the longest prefix of 𝑝 of weight at most 𝑤(𝑝)
2 , and 𝑝2 the longest

suffix of 𝑝 of weight at most 𝑤(𝑝)
2 . If they overlap, then one can pick 𝑒𝑛 to be anywhere

in their overlap, and we have what we wanted.
Otherwise, let 𝑝1 be 𝑒0 . . . 𝑒𝑛−1 and 𝑝2 be 𝑒𝑚+1 . . . 𝑒𝑟. If 𝑛 = 𝑚, we have cut the path

𝑝 in exactly two paths an a single edge dividing them, with the weight of 𝑝1 and 𝑝2 being
at most half of that of 𝑝. If 𝑛 < 𝑚, by definition 𝑤(𝑝1𝑒𝑛) > 𝑤(𝑝)

2 and 𝑤(𝑒𝑚𝑝2) > 𝑤(𝑝)
2 , so

𝑤(𝑝) ≥ 𝑤(𝑝1𝑒1) + 𝑤(𝑒2𝑝2) > 𝑤(𝑝), which is absurd.

Because of Theorem 10, by induction, the (𝐶𝑛) satisfy the announced properties.
The answer to our query is then simply stored in 𝐶⌈log 𝑥⌉[𝑠, 𝑡, 𝑐][𝑤̃]. Without taking

into account the time to build 𝐶0, which fits in the space and time bounds of the theorem,
this runs in 𝒪(|𝑉 (𝐺)|2𝑤̃𝑐) space and 𝒪(|𝑉 (𝐺)|𝑐𝑤̃ polylog 𝑤̃) time using the fast Fourier
transform.

Big 𝑤̃ Let us now assume 𝑤̃ ≥ |𝑉 (𝐺)|. As in the previous case, we are going to build
iteratively a sequence of arrays 𝐷𝑛 that store the information about longer and longer
paths between any two vertices in 𝐺. There are three main differences with the 𝐶𝑛,
though:

• the 𝐷𝑘 are going to count the number of paths between two nodes, not just store a
bit to indicate whether there is one: in the end, we just check whether the number
of paths is nonzero to know whether there is one;

• we are not going to build the 𝐷𝑘 as is. Instead, we are going to build them modulo
a certain 𝑝 ∈ P and, if we are lucky enough the number of (𝑤̃, 𝑐))-walks from 𝑠 to 𝑡
will not be divisible by 𝑝 (if there is at least one such path), so we can still check
whether the result is nonzero modulo 𝑝 to check whether there is a path;

• in 𝐶𝑛, there can be nonzero entries that represent paths of length above 2𝑘, whose
weight is large. With 𝐷𝑛s, we are going to be more picky when counting paths
to avoid those heavy walks. To do so, we are going to multiply the weight of the
walks we consider by 1 + 𝜀 at each step, rather than 2, with a well-chosen 𝜀.

Let 𝜀 = 1
log 𝑥 , which is strictly smaller than 1 for 𝑥 large enough. Let 𝐷0 be defined

as follows: for any 𝑢, 𝑣 ∈ 𝑉 (𝐺), for any 𝑙 ∈ [𝑐] and 𝑑 ∈ [𝑤̃], we let 𝐷0[𝑢, 𝑣, 𝑙][𝑑] = 1 if
𝑑 ∈ {0, 1} and there is a (𝑑, 𝑙)-walk from 𝑢 to 𝑣. Otherwise, 𝐷0[𝑢, 𝑣, 𝑙][𝑑] = 0. To define
𝐷𝑛 for 𝑛 > 0, we first need to define an 𝑛-good triplet (𝑛1, 𝑛2, 𝑛3): such a triplet is
𝑛-good if

8



(a) (1 + 𝜀)𝑛1−1 + (1 + 𝜀)𝑛2−1 + (1 + 𝜀)𝑛3−1 ≤ (1 + 𝜀)𝑛

(b) 2 · (1 + 𝜀)max{𝑛1,𝑛3}−1 ≤ (1 + 𝜀)𝑛

Then, for 𝑛 > 0, we define 𝐷𝑛 with

𝐷𝑛 := �*
(𝑛1,𝑛2,𝑛3) 𝑛-good

𝐷𝑛1 ⊙ 𝐵𝑛2 ⊙ 𝐷𝑛3

where 𝐵𝑛 describes all pairs of nodes connected by a (𝑑, 𝑙)-edge, with 𝑑 ≤ (1 + 𝜀)𝑛. Since,
if (𝑛1, 𝑛2, 𝑛3) is 𝑛-good, 𝑛𝑖 < 𝑛 for 𝑖 = 1, 2, 3, this definition is sound.

This refines our search: instead of considering any edge to connect two paths of weight
2𝑛, to form any path of weight at most 2𝑛+1, which makes us consider some paths with
arbitrary high weight, we only connect paths in 𝐷𝑛1 and 𝐷𝑛3 by edges in 𝐵𝑛2 , ensuring
that their total weight is bounded. More precisely, we are going to show that, for every
𝑛 = 0, . . . , ⌈log1+𝜀 𝑥⌉:

1. 𝐷𝑛[𝑢, 𝑣, 𝑙][𝑑] > 0 implies that there exists a (𝑑, 𝑙)-walk from 𝑢 to 𝑣 in 𝐺;

2. for each 𝑑 ≤ (1+𝜀)𝑛, if there exists a (𝑑, 𝑙)-walk from 𝑢 to 𝑣 in 𝐺, then 𝐷𝑛[𝑢, 𝑣, 𝑙][𝑑] >
0;

3. 𝐷𝑛[𝑢, 𝑣, 𝑙][𝑑] = 0 for all 𝑑 > (1 + 𝜀)𝑛 · (1 + 𝜀)2𝑛·log(1+𝜀).

The two first properties follow, by induction, from Theorem 10. The following lemma
proves the third property.

Lemma 11. For every 𝑛 and every 𝑛-good triple (𝑛1, 𝑛2, 𝑛3), the largest weight of a walk
in 𝐷𝑛1 ⊙ 𝐵𝑛2 ⊙ 𝐷𝑛3 is at most (1 + 𝜀)𝑛 · (1 + 𝜀)2𝑛·log(1+𝜀).

Proof. By induction on 𝑛. This is clearly true for 𝐷0, as its only non-zero entries are for
𝑑 ∈ {0, 1}.

For 𝑛 > 0, let (𝑛1, 𝑛2, 𝑛3) be a 𝑛-good triple and, without loss of generality, assume
𝑛1 ≤ 𝑛3. The walks in 𝐷𝑛1 ⊙ 𝐵𝑛2 ⊙ 𝐷𝑛3 have weight at most

(1 + 𝜀)𝑛1 · (1 + 𝜀)2𝑛1·log(1+𝜀) + (1 + 𝜀)𝑛2 + (1 + 𝜀)𝑛3 · (1 + 𝜀)2𝑛3·log(1+𝜀)

≤ ((1 + 𝜀)𝑛1 + (1 + 𝜀)𝑛2 + (1 + 𝜀)𝑛3) · (1 + 𝜀)2𝑛3·log(1+𝜀)

≤ (1 + 𝜀)𝑛 · (1 + 𝜀)2𝑛3·log(1+𝜀) by condition (a)
≤ (1 + 𝜀)𝑛+1 · (1 + 𝜀)2𝑛·log(1+𝜀)

We just have to show how to efficiently compute the 𝐷𝑛. Let us start with the case
𝑛 = 0.

Lemma 12. 𝐷0 can be computed in 𝒪(|𝑉 (𝐺)|2(|𝐸(𝐺)| + |𝑉 (𝐺)|3)𝑐2 polylog(𝑤̃, 𝑐)) time
and 𝒪((|𝐸(𝐺)| + |𝑉 (𝐺)|3) polylog 𝑐) space.

9



Proof. We compute 𝐷0 by starting with the case 𝑑 = 0. For any 𝑢, 𝑣 ∈ 𝑉 (𝐺) and
𝑙 ∈ [𝑐], by [Dud+22, Theorem 3.8], we can find whether there is a path of cost 𝑙
from 𝑢 to 𝑣 in the graph where we have kept only the edges of null weight in 𝐺 in
𝒪((|𝐸(𝐺)| + |𝑉 (𝐺)|3)𝑐 polylog 𝑐) time and 𝒪((|𝐸(𝐺)| + |𝑉 (𝐺)|3) polylog 𝑐) space. All in
all, this takes 𝒪(|𝑉 (𝐺)|2(|𝐸(𝐺)| + |𝑉 (𝐺)|3)𝑐2 polylog 𝑐) time. Since we want to succeed
with probability at least 1/2, we repeat this computation Θ(log(|𝑉 (𝐺)|2𝑤̃)) = 𝒪(log 𝑤̃)
times.

For the case 𝑑 = 1, we note that

𝐷0[𝑢, 𝑣, 𝑙][1] =
⋁︁

(𝑤,𝑤′,1,𝑖)∈𝐸(𝐺)
𝑗∈[𝑙−𝑖]

𝐷0[𝑢, 𝑤, 𝑗][0] ∧ 𝐷0[𝑤′, 𝑣, 𝑙 − 𝑗 − 𝑖][0]

which can be computed in 𝒪(|𝑉 (𝐺)|2𝑐 · |𝐸(𝐺)|𝑐) = 𝒪(|𝑉 (𝐺)|2|𝐸(𝐺)|𝑐2) time.

To compute 𝐷𝑛 efficiently, we compute it modulo 𝑝, for a well-chosen 𝑝 ∈ P, by applying
the Theorem 9. Since the only information we are interested into is whether a certain
entry of 𝐷𝑟 is nonzero, with good probability, if that entry is nonzero, then it will be
nonzero modulo 𝑝, ie. 𝑝 does not divide it, where 𝑟 is the last 𝑛 for which we need to
compute 𝐷𝑛, ie. 𝑟 = ⌈ log1+𝜀(𝑥)⌉. Before proceeding, we need to show two lemmas that
bound the number of 𝐷𝑛 we need to compute, and the number of entries we should
actually store for each of them (we don’t care for entries that are guaranteed to be zero,
but the computations must not overflow to apply the Theorem 9, so we must ensure that
the nonzero entries are all 𝒪(𝑥)).

Lemma 13. 𝑟 = 𝒪(log2 𝑥)

Proof. For big enough 𝑥, 𝜀 is small enough that log(1 + 𝜀) > 𝜀.

𝑟 = ⌈ log1+𝜀 𝑥⌉ ≤ 1 + log 𝑥

log(1 + 𝜀)

≤ 1 + log 𝑥

𝜀
by the aforementioned fact

= 𝒪(log2 𝑥)

Lemma 14. Let 𝑦 =
⌈︁
(1 + 𝜀)𝑟 · (1 + 𝜀)2𝑟·log(1+𝜀)

⌉︁
. We have that 𝑦 = 𝒪(𝑥).

Proof. For any 𝜀, log(1 + 𝜀) < 2𝜀, hence

𝑦 = (1 + 𝜀)𝑟 · (1 + 𝜀)2𝑟·log(1+𝜀)

≤ (1 + 𝜀)𝑟·(4𝜀+1)

≤ (1 + 𝜀)(1+log1+𝜀 𝑥)·(4𝜀+1)

≤ 𝑥4𝜀+1 · (1 + 𝜀)4𝜀+1

= 𝒪(𝑥 · 24·log 𝑥· 1
log 𝑥 )

= 𝒪(𝑥)

10



By Theorem 8, we can find a prime 𝑝 = 𝒪(𝑦2 polylog 𝑦), a 𝑡 ∈ N such that 𝑦 ≤ 𝑡 =
𝒪(𝑦 polylog 𝑦) and a 𝜔 ∈ F𝑝 such that, for any 𝑁 = 2𝒪(𝑦 log 𝑦), with probability at least
1/2, we have:

1. 𝜔 is a 𝑡-th root of the unity;

2. 𝑝 - 𝑁

We will therefore use arrays in F𝑡
𝑝 to perform our computations. They will not overflow,

as 𝑡 ≥ 𝑦 and by Theorem 14, and 𝑡 = 𝒪(𝑦 polylog 𝑦) = 𝒪(𝑥 polylog 𝑥).

Lemma 15. All values in 𝐷𝑟 are bounded by 2𝒪(𝑥 log 𝑥).

Proof. Let 𝑓 be the tight monotonous function such that, for every 𝑘 ∈ [𝑟], 𝑓(𝑘) is an
upper bound on the values in 𝐷𝑛, and let 𝑔 = |𝑉 (𝐺)|. Observe that a single product
𝐴 ⊙ 𝐵 of arrays with entries bounded by 𝑎max (respectively, 𝑏max) results in a matrix
with entries bounded by 𝑔 · 𝑦 · 𝑐 · 𝑎max · 𝑏max. Hence, as values in 𝐵𝑘 are in {0, 1}, we have
the bound

𝑓(𝑘) ≤
∑︁

(𝑘1,𝑘2,𝑘3) 𝑘−good
𝑓(𝑘1) · (𝑦𝑔𝑐)2 · 𝑓(𝑘3)

≤ 𝑘3(𝑦𝑔𝑐)2𝑓(𝑘max)2

≤ 𝑊𝑓(𝑘max)

where 𝑘max is the largest possible value of 𝑘𝑖 that can be part of a 𝑘-good triple, and
𝑊 = 𝑟2(𝑦𝑔𝑐)2 = 𝒪(𝑤̃7) as 𝑦 = 𝒪(𝑥), 𝑤̃ = Ω(𝑐) and 𝑤̃ ≥ 𝑔.

By definition of a 𝑘-good triple, we have

2 · (1 + 𝜀)𝑘max−1 < (1 + 𝜀)𝑘

𝑘max + log1+𝜀 2 − 1 < 𝑘

Since 𝑘 and 𝑘max are integers, we even have 𝑘max ≤ 𝑘 − 𝑐 where 𝑐 = ⌈ log1+𝜀 2 − 1⌉. By
monotonicity of 𝑓 , we have, for 𝑘 = 0, . . . , 𝑟,

𝑓(𝑘) ≤
{︃

𝑊 · 𝑓(𝑘 − 𝑐)2 𝑘 ≥ 𝑐

𝑊 𝑘 < 𝑐

By induction, this means that we have, for 𝑘 ∈ [𝑟], 𝑓(𝑘) < 𝑊 2
⌈︀

𝑘
𝑐

⌉︀
+1−1. As 𝑊 = 𝒪(𝑤̃7),

we have
𝑓(𝑟) < 𝑊 2

⌈︀
𝑘
𝑐

⌉︀
+1−1 = 𝑊 𝑂(2𝑟/𝑐) < 2𝑂(2𝑟/𝑐 log 𝑤̃)

11



Let us finally show that 𝑟
𝑐 = log 𝑥 + 𝒪(1):

𝑟

𝑐
≤

log1+𝜀(𝑥) + 1
log1+𝜀(2) − 1 =

log 𝑥
log(1+𝜀) + 1

log 2
log(1+𝜀) − 1

= log 𝑥 + log(1 + 𝜀)
1 − log(1 + 𝜀) ≤ log 𝑥 + 2𝜀

1 − 2𝜀

= log2 𝑥 + 2
log 𝑥 − 2 = log 𝑥 + 𝒪(1)

So we finally have 𝑓(𝑟) = 2𝒪(𝑥 log 𝑥).

In particular, there is a probability of at least 1/2 that, if 𝐷𝑟[𝑠, 𝑡, 𝑐][𝑤̃] ̸= 0, 𝑝 -
𝐷𝑟[𝑠, 𝑡, 𝑐][𝑤̃]. We can therefore use Theorem 9 to compute 𝐷𝑟[𝑠, 𝑡, 𝑐][𝑤̃] (mod 𝑝), and
output whether it is nonzero.

Let us now estimate the size of the circuit, to check that the complexity is within
the stated bounds. We compute 𝑟 = 𝒪(log2 𝑥) arrays 𝐷𝑛, for each of which we process
𝒪(𝑟3) 𝑘-good triples which perform two ⊙ products each. Every ⊙ product intro-
duces 𝒪(|𝑉 (𝐺)|3𝑐2) gates. Hence the total number of gates is 𝒪(|𝐸(𝐺)| + 𝑐2 · |𝑉 (𝐺)|2 ·
polylog(𝑤̃, 𝑐)).

By Theorem 9, we compute 𝐷𝑟[𝑢, 𝑣, 𝑙][𝑑] in 𝑂(|𝐶|𝑡 polylog 𝑝) time and 𝒪(|𝐶| log 𝑝)
space, where 𝑡 = 𝒪(𝑤̃ polylog 𝑤̃), 𝑝 = 𝒪(𝑦2 polylog 𝑦), 𝑦 = Θ(𝑤̃) and |𝐶| = 𝒪((|𝐸(𝐺) +
𝑐2|𝑉 (𝐺)|3) log 𝑤̃). Hence, it takes 𝒪((|𝐸(𝐺) + 𝑐2|𝑉 (𝐺)|3) log2 𝑤̃) space and 𝒪((|𝐸(𝐺) +
𝑐2|𝑉 (𝐺)|3)𝑤̃ polylog 𝑤̃) time.

12


	Finding and Storing Occurrences
	Storing and Finding Witnesses
	Streak Queries
	Other Work
	Minor problem in the base article
	Improving the time complexity of the base algorithm

	Proof of Graph Subroutine Theorem

