
Two-level type theory in Lean and application to
semi-simplicial types in HoTT

Adrien Mathieu∗

August 30, 2024

Special thanks to Arthur Adjedj for being the Lean documentation.

Contents
1 Introduction 1

1.1 Contributions . 1
1.2 Overview . 2

2 Preliminary notions 2
2.1 Homotopy type theory . 2
2.2 Two-level type theory . 2

3 Formalization of 2LTT in Lean 4
3.1 The object language . 4

3.1.1 Object universe hierarchy . 4
3.1.2 Type formers . 5
3.1.3 Object inductive types . 5

3.2 Object level tactics . 6
3.3 Homotopy type theory . 8
3.4 Examples . 9
3.5 Soundness of the embedding . 9

4 Definition of semi-simplicial types in 2LTT 10
4.1 Preliminary notions and notations . 10

4.1.1 Presheaves and their limits . 11
4.1.2 Semi-simplicial category . 13
4.1.3 Direct categories . 13

4.2 Fibrant types . 15
4.2.1 Layered presheaf lemmas . 15
4.2.2 Fibrancy of the matching object . 17

4.3 Main result . 19

∗Under the supervision of Christian Sattler.

Abstract

Despite the great interest in homotopy type theory in the study of foundational
systems, its profound links with homotopy theory, and the fact that simplicial types are
basic yet important tools of homotopy theory, it has proved impossible so far to define
simplicial types in homotopy type theory. Over a decade of failed attempts in doing so
has led to conjecturing that it is actually impossible. However, stating a conjecture
that speaks about the impossibility to define an object in the same language in which
it is (conjectured to be) impossible to define such object is challenging on its own. We
use tools from the theory of Reedy categories, and of a conservative strengthening of
HoTT (two-level type theory) to formalize a precise statement for this conjecture.

1 Introduction
Homotopy type theory has been introduced as a foundational system for mathematics that could be
convenient to work with, and whose proofs would be practical to formalize, in an attempt to reduce
drastically the number of unnoticed mistakes in very technical arguments [Voe14]. Yet, despite the
great expressiveness of homotopical type theory, certain foundational notions of homotopy theory,
such as (semi-)simplicial sets, haven’t yet been successfully defined in this framework, despite over
a decade of efforts in trying to do so. Voevodsky attempted to overcome this apparent deficiency
of HoTT by strengthening the theory with a second, strict identity type [Voe13], as did others
[Her15]. However, this type system is not conservative over HoTT, meaning that a term in HTS
which happens to only use the HoTT parts of HTS cannot be translated into an equivalent term
in HoTT. This has led to the development of the two-level type theory [Ann+23], a conservative
strengthening of HoTT. 2LTT, as its name suggests, has two type theories: the so-called object
theory, which is an embedding of HoTT, and a meta-theory, which is a strengthening of MLTT
with UIP and function extensionality. These two theories are glued together by a lifting operation,
that maps an object-level type into a meta-level type. Several formalizations of this theory have
been carried out [Usk23] [Ann+23], but they are incomplete.

Besides the original motivation for 2LTT, Kovács has highlighted a link between two-level
type theory and staged compilation [Kov22]. Staged compilation is a pattern for designing
metaprogramming aspects of a language which allows an extremely expressive metalanguage (for
instance, a dependently typed meta-language over a simply typed object language) which can be
type checked before expansion, giving well-formedness guarantees of the code output.

This interpretation of Kovács of two-level type theory as a staged version of HoTT reveals
another possible usage for it in the mathematical view. Since it is conservative over HoTT, it is
possible to use it to generate tedious HoTT terms: every term in the meta-theory whose type
is a lifted type can be translated into an equivalent HoTT term, even if the original term used
meta constructions, just as a program using metaprogramming facilities can be expanded into
a “regular” program, by executing the meta-code. This is particularly useful as, for instance,
truncated semi-simplicial types, even though theoretically expressible in HoTT, are in practice
very painful to write by hand. Writing uniformly the family (in the meta-language) of 𝑛-truncated
semi-simplicial types (that live in the object language), then choosing a concrete 𝑛, and generating
the corresponding HoTT type is much more straightforward.

1.1 Contributions
• We provide a full formalization of a two-level type theory in Lean, except for HITs in the

object language. In Section 3, we discuss the design of this formalization.

• In this framework, we provide a formalization of a part (about 30% of Part I) of the HoTT
book [Uni]. In addition to the proofs and definitions, we also implement several tactics and

1

other language niceties to make object-level programming and proof making as similar and
straightforward as in the meta-level as possible.

• In Section 4, we develop the theory of Reedy presheaves to provide a definition of semi-
simplicial types in the meta theory, where every truncation up to a certain dimension of
this definition lives in the object language. Except for two intermediate results (which are
admitted in our formalization), this definition has been formalized in our framework.

1.2 Overview
This report has two main sections, Section 3 and Section 4, exposing, respectively, the imple-
mentation of 2LTT in Lean as a library, and an example of the formalization of semi-simplicial
types in said theory, using our library. Before that, we briefly expose the technical requirement to
understand the main sections, in Section 2.

The formalization can be found at https://github.com/jthulhu/2ltt.

2 Preliminary notions
We expose here the preliminary notions needed to understand what follows. We suggest reading
[Uni] and [Ann+23] for more details. We assume familiarity with Martin-Löf type theory, that is,
a dependent type theory with universe hierarchy, sigma and pi type formers, inductive types and
identity types. Furthermore, we recall the uniqueness of identity proof (UIP) axiom, because it
will be an important part of the theory we will use: for every type 𝐴, 𝑥, 𝑦 ∶ 𝐴 and 𝑝, 𝑞 ∶ 𝑥 =𝐴 𝑦,
we have

𝑝 =𝑥=𝐴𝑦 𝑞

Using a pure Martin-Löf type theory as a foundational system, though, is too restrictive. Proofs
become very tedious, and some useful propositions (such as function extensionality) are undecidable.
Hence, proof assistants are usually founded on stronger theories. One that is of particular interest
is the homotopy type theory, because it makes reasoning “up to equivalence” (something that is
usually very tedious in proof assistants) completely straightforward.

2.1 Homotopy type theory
Homotopy type theory is a Martin-Löf type theory, which additionally postulates the axiom of
univalence, and has higher inductive types. The axiom of univalence states that, given two types
𝐴 and 𝐵, the type of equivalences between 𝐴 and 𝐵 is equivalent to the type of equalities between
𝐴 and 𝐵, ie.

(𝐴 ≃ 𝐵) ≃ (𝐴 = 𝐵)

This suggests a natural interpretation for types 𝐴 in HoTT as topological spaces, for elements
𝑥, 𝑦 ∶ 𝐴 as points in the space, and for equalities 𝑝, 𝑞 ∶ 𝑥 = 𝑦 as paths between those two points.
Higher equalities 𝑟 ∶ 𝑝 = 𝑞 can be seen as homotopies between paths. This interpretation motivates
the name homotopy type theory.

An other perspective on homotopy type theory is to see types as groupoids, whose (higher)
morphisms are identity types.

Homotopy type theory also comes with higher inductive types (ie. inductive type that can
generate higher paths over a type, besides points in the type), but since what follows does not use
this feature of HoTT, we will not explain them in detail.

2.2 Two-level type theory
No one has achieved defining semi-simplicial types in homotopy type theory (yet?), but it is possible
to define them in the models, using the external equality. This has given the idea of internalizing

2

https://github.com/jthulhu/2ltt

the external world in the theory, which is exactly what two-level type theory is. Concretely, this
means that, in two-level type theory, two type theories coexist:

• the outer theory, also called the meta theory, the exo theory or the strict theory, which is a
MLTT with uniqueness of identity proofs and function extensionality;

• and the inner theory, also called the object theory or the fibrant theory, which is a homotopy
type theory.

These two theories are “glued” together by the fact that inner objects can be seen as outer objects.
What this means specifically depends on the point of view:

• From the “outer” point of view, there are only “outer” objects; some of them happen to form
a sub-theory which we call the “fibrant” fragment of the theory. This works by having a
“fibrant” property (which is not a mere proposition!) that allows us to detect the fibrant
fragment of the theory.

• From the “middle ground” point of view, there are both inner and outer objects; contexts can
be formed with types from both theories, but such mixed contexts can only form judgments
about inner terms. There are also lifting maps that map inner types to outer types, and
values of inner types to values of the lifted type.

• From the “inner” point of view, we manipulate HoTT terms as usual, except that there
exist some exo-types which behave a bit differently, in that they can only appear in contexts.
Exo-equality is though of as the (inner) definitional equality (although that’s not postulated
in 2LTT), and can be used to manipulate object-level objects as if we were manipulating a
model of the object theory.

We will adopt the middle ground point of view for what follows. Identifiers referring to points
of the object theory will have a subscript o1, ie. Σo, and the lifting operation for types will be
denoted as such

↑− ∶ Typeo → Type 2

Because the proposition and definitional equalities are an aspect of type theory that differs from
usual mathematics, which can be confusing, and because the distinction between the object-level
equality and the meta equality is a central point of 2LTT, we will recall the different equalities
that we are manipulating, as well as their notation in what follows.

Definitional Propositional
Meta ≡ =

Object ≡o =o

Note that we want to identify the object definitional equality with the meta propositional
equality: the whole point of 2LTT is to internalize the external equality in the theory. While the
equivalence between both is not a postulated meta-axiom of the theory (because it cannot be
expressed in the theory itself), this is the case in the considered models.

Indeed, we can show that the meta propositional equality implies the object propositional
equality.

1Other authors have used superscript o (object) [Ann+23] or i (inner) [Ann+23] to denote object-level components,
or superscript s (strict) [ACK16] or superscript e (exo) [Ahr+22] to denote meta-level components. The reader
familiar with the literature would probably be confused if we didn’t, in turn, make up our own notation.

2To be precise, this should be ↑Typeo → Type, but this makes ↑ appear in its own type. In Section 3.1, we will
address this issue.

3

3 Formalization of 2LTT in Lean
Our goal is to formalize 2LTT in a way that makes it convenient to write proofs in 2LTT. The
goal is not to be able to reason about 2LTT, but rather, reason in 2LTT.

To do so, we aim at a shallow embedding in a proof assistant, Lean. Since 2LTT has two
languages (the meta language, and the object language), we can have at most one being embedded
directly into the language of the proof assistant itself. We choose it to be the meta language, that
is, “plain” Lean will play the role of the outer language, and we will embed an other language in
Lean to play the role of the inner language. Lean’s theory is a strengthening of MLTT with UIP
and function extensionality, so using it for the outer language is sound.

In the object language, we furthermore postulate the univalence axiom. UIP happens to be true
in the meta language (because, in Lean, the identity type lives in a proof irrelevant universe).

The distinction between the outer and the inner language is not syntactical. Instead, we encode
this distinction in the types of the terms: we have two universe hierarchies, one for outer types
(the usual Lean type hierarchy Type u); and one for inner types Typeₒ u.

3.1 The object language
3.1.1 Object universe hierarchy

The object universe hierarchy should be a type hierarchy Typeₒ u indexed by the same universe-
level integers as Lean types (which we will mostly leave implicit from now on), equipped with a
lifting operation

↑− ∶ ↑Typeo → Type

Yet, this signature is problematic because ↑ appears in its own type. To solve this issue, we first
create a “lifted universe” lifted-U alongside a lifting operation

↑− ∶ lifted-U → Type

such that lifted-U ≡ ↑Typeo.
1 structure MetaU.{u} : Type (u+1) := { intoType : Type u }
2 def Ty : MetaU := { intoType := MetaU }
3 structure El (α : MetaU) := { intoU : α.into Type }
4 def liftedU.{u} : Type (u+1) := El Ty
5 def Typeₒ : liftedU := { intoU := Ty }
6 def lift.{u} (α : liftedU.{u}) : Type u := El α.intoU

We can check that we have the promised property
7 example : lift Typeₒ = liftedU := rfl

and therefore, our lifting operator has the right signature
8 universe u in
9 example : lift (Typeₒ u) → Type u := lift

We can forget about MetaU, Ty, El and liftedU. These are gadgets that, in our implementation,
are hidden from the end user: this setup being a correct implementation of 2LTT requires these
details not being accessible by the end user. One important thing to note about these gadgets
is that they both hide the actual content of an object-level value to the end user, while still
exposing enough information to the kernel such that �and �rules compute as they would in the
outer language.

If we step back for a moment, and look back at the actual lift signature at its definition, it
looks like a universe à la Tarski (meaning that points of the universe liftedU are not types, but
can be mapped to a type using lift), whereas the universes in Lean are à la Russel (that is, a
point of Type is, well, a type). To make our object language more idiomatic, and more convenient
to use, we hook into the type inference system of Lean to make it infer whenever it has to lift
something. That is, for instance, when we expect a type, and provide the term Typeo, it will
implicitely be lifted to ↑Typeo. Hence, we could also write

4

10 universe u in
11 example : Typeₒ u → Type u := lift

In fact, once this is setup, we never write lift again: the inference is enough in every case!

3.1.2 Type formers

After the universe hierarchy, we need to provide the basic type formers for the object language,
that is, Π and Σ types. They’re both straightforward to define in our setup.

12 def Piₒ (α : Typeₒ) (β : α → Typeₒ) : Typeₒ :=
13 Typeₒ.fromType ((a : α) → β a)
14
15 namespace Piₒ
16 variable {α : Typeₒ} {β : α → Typeₒ}
17
18 def lam (f : (a : α) → β a) : Piₒ α β := El.mk f
19 def app (f : Piₒ α β) : (a : α) → β a := f.intoU
20 end
21
22 def Sigmaₒ (α : Typeₒ) (β : α → Typeₒ) : Typeₒ :=
23 Typeₒ.fromType (Σ a : α, β a)
24
25 namespace Sigmaₒ
26 variable {α : Typeₒ} {β : α → Typeₒ}
27
28 def mk (x : α) (y : β x) : Sigmaₒ α β := El.mk (Sigma.mk x y)
29 def pr₁ (x : Sigmaₒ α β) : α := x.intoU.fst
30 def pr₂ (x : Sigmaₒ α β) : β (pr₁ x) := x.intoU.snd
31 end

They both inherit 𝜂 rules from Lean’s 𝜂 rules, that is, object pi types (resp. sigma types) have
extensionality up to definitional meta equality! We also define similarly a primitive object-level
identity type, that is required for object higher inductive types (which we have not implemented,
but for which everything is ready).

3.1.3 Object inductive types

For our object language to be fully featured, we only need to be able to define arbitrary inductive
types. Our encoding will be similar to that used for Σ types3, ie. defining a corresponding inductive
type in Lean, then wrapping it in our black box to make it live in Typeo. Then, we expose its
constructors and its induction principle, but that can only eliminate to object-level types. If the
inductive type is structure-like, it additionally has 𝜂 computation rules.

For instance, the following holds

32 inductiveₒ Unitₒ : Typeₒ where
33 | point : Unitₒ
34 theorem unit_eta (x : Unitₒ) : x = Unitₒ.point := rfl

This lets us define the object-level identity type, very straightforwardly:

35 inductiveₒ Idₒ {α : Typeₒ} : α → α → Typeₒ where
36 | refl (x : α) : Id x x

For the sake of debugging, private, inner types that are wrapped to produce object-level types
live in the private namespace of a module “owned” by our library, rather than the module they
were defined in (which is the usual behavior for private items in Lean). This means that it is
impossible for anyone but us to access those items (which is good, as being able to access them
would break the conservativity over HoTT). Of course, this holds up to meta programming: this

3In fact, we could directly define Σ types using inductive types in our formalization.

5

constraint is only enforced in the elaborator, not in the kernel (which has no notion of private
items).

Generating the induction principle means wrapping the induction principle that the kernel
automatically provides for the wrapped inductive type. This means that our implementation
must adhere to the signature generated by the kernel (which is, to the best of our knowledge,
not documented anywhere). This is complicated by the fact that the elaborator will perform
additional modification of the inductive declarations, such as the parameter promotion: when
Lean recognizes that an index of an inductive type family could be, instead, a parameter, it will
sometimes “promote” it as such. For instance, the identity type as we just defined it might be
promoted to the following form

1 inductiveₒ Idₒ {α : Typeₒ} (x : α) : α → Typeₒ where
2 | refl : Id x x

Those two types are equivalent, but the induction principle of the latter is known as the based
path induction, which is more convenient to use, because we require only one of the endpoints of
the path we are inducting on to be a universally quantified over variable, while the other “end” of
the path could be any expression. Of course, it can be derived from the induction principle of our
former definition.

Initially, our implementation tried to follow closely the (undocumented4) behavior of the Lean
compiler; but that was a bad decision, because this entails a high coupling with the Lean internals,
implying more efforts to maintain our library. Instead, we have reimplemented our own higher level
elaborator steps, that roughly perform the same job as their counterpart in the Lean compiler.

3.2 Object level tactics
Most of the usual tactics also work seamlessly for object level proofs. There are some exceptions,
though: the rewrite tactic, for instance, can rewrite everywhere, but only along meta equalities.
Our object-level version, rewriteₒ, can only rewrite on object types, and uses object paths.
Similarly, we have rewritten intro and apply (which, respectively, are the introduction and
elimination principle of Π types). We have also partially rewritten the induction tactic: our
object-level induction tactic only works with the object equality, and not arbitrary inductive
types5 We have also implemented two other general purpose tactics, which are, in principle, not
useful, but were especially handy for debugging our implementation: check and replace, which
respectively checks that the current goal is well-typed6, and performs a computation step that
preserves definitional equality.

Furthermore, we have implemented some elaboration niceties that are available in plain Lean,
but do not work out of the box. For instance, rather than writing

example : Nat := Nat.succ (Nat.succ (Nat.succ Nat.zero))

Lean allows you to write Nat.zero.succ.succ.succ. When elaborating this method-like syntax,
Lean tries to infer the type of the receiver (whatever is on the left of the dot), and then looks for a
function named like the “method” (here, succ) in the namespace of that type. Due to our encoding,
this doesn’t work with object-level values: their type is an implementation detail whose namespace
only contains private defintions. We therefore provide a dot-like syntax Natₒ.zero�succ�succ�succ,
whose behavior is similar to Lean’s.

To give a feeling of tactics development in Lean, we will show how (a simplified version of)
exhibitₒ is implemented. This tactics is used to advance a goal of type Σo𝑥 ∶ 𝛼, 𝛽𝑥, by providing

4At the time of writing, the paragraph https://ammkrn.github.io/type_checking_in_lean4/declarations/

inductive.html#recursors simply reads “TBD”.
5The reason for this restriction is simply that we have implemented the inductionₒ tactic before the object inductive

types. Our implementation, though, follows closely Lean’s implementation of the (general purpose) induction

tactic, and could therefore easily be extended to handle arbitrary object inductive types.
6Which is, in principle, always the case. Things can go sour if there is a bug in a tactic though, so this is useful for

debugging tactics.

6

https://ammkrn.github.io/type_checking_in_lean4/declarations/inductive.html#recursors
https://ammkrn.github.io/type_checking_in_lean4/declarations/inductive.html#recursors

a value 𝑒 ∶ 𝛼, and rewriting the goal to 𝛽𝑒, similarly to what exists does for existential quantifier
goals.

First of all, we need to register a custom syntax for this tactic. Tactics have their own syntax
category, tactic:

1 syntax (name := exhibit) "exhibitₒ " term : tactic

This means that the keyword exhibitₒ followed by a term is a syntactically valid tactic. Now, we
must provide an implementation for this tactic, that is, we must inform the elaborator how to deal
with this syntactic node. Contrary to our previous example, this is not just a tree translation,
transforming a node of the syntax tree into a node of the intermediate representation of Lean’s
code. Instead, this elaboration requires both partially building a proof term and interacting with
the goal state. Note that, in Lean, these two are separate, and there is nothing that checks they
stay in sync. The goal state showing there is nothing more to prove doesn’t necessarily mean we
have produced a valid proof term, and more generally speaking a goal state being transformed in
certain ways by tactics doesn’t necessarily mean that a corresponding proof term is being built. It
is up to the implementation of the tactic to ensure this is true. Failure to uphold this assumption
may result in an elaborator error (if someone, at some point, checks certain assumptions), or, if
the proof term is wrongly elaborated without further checks, it produces a kernel error. The kernel
always checks the proofs in their intermediate representation form, so mistakes in the elaborator
cannot lead to unsound logical conclusions. They can, however, make Lean crash, if, for instance,
an unchecked out of bound array indexing operation is performed.

The actual implementation of the tactic is as follows

1 @[tactic exhibit]
2 def exhibit_impl : Tactic
3 | `(tactic| exhibitₒ $w) => do
4 let goal ← getMainGoal
5 goal.withContext do
6 let goal_type ← goal.getType
7 let some (u₁, u₂, α, β) ← (← goal_type.objType!).sigma?
8 | throwTacticEx `exhibitₒ goal m!"...error message..."
9 let w ← elabTermEnsuringType witness (α.liftWith u₁)

10 let new_goal ← mkFreshExprSyntheticOpaqueMVar ((.app β w).liftWith u₂)
11 new_goal.mvarId!.withContext do
12 goal.assign (mkAppN (.const ``Sigmaₒ.mk [u₁, u₂]) #[α, β, w, new_goal])
13 replaceMainGoal [new_goal.mvarId!]

Since Lean has an open-ended elaborator, meaning that anyone can hook to elaborate any
syntactic node, an elaborator always starts by pattern-matching on all possible syntax nodes. The
pattern matching need not to be exhaustive: if an unsupported pattern exception is raised by an
elaborator (which is the default behavior for every pattern not explicitely handled), Lean will try
the next elaborator, up until one succeeds, one fails with an other error, or none are left.

Here, we are only interested in the node we have just declared, in the tactic syntax category.
In lines 4-5, we retrieve the active goal, and do the rest of our computations in its context. The
context of a goal is an environment for local hypothesis, ie. the bindings for free variables that
occur in the goal, and which are not constants defined somewhere else. Then, line 6-8, we retrieve
the type of the goal, and check whether it is indeed an object-level sigma type, otherwise, an
error is raised. If everything went well, we can actually elaborate the witness provided by the user
(which, so far, is still is syntactic node). We pass to the elaborator the information of the type
we expected for this term, rather than simply letting the elaborator infer the type, and checking
afterwards that the two types match, as type inference is undecidable. By doing it this way, we
increase the number of cases where the user is not prompted for additional type information; and
this also takes care of reporting and error in case of type mismatch.

Before further explaining this code, an explanation of how Lean goals work is important. Lean
goals are simply metavariables; goals are closed by assigning to the metavariable, and are opened
by creating a new metavariable, and by registering it as a goal. This is very convenient, as it

7

makes it possible to write proof terms that depend on a goal that is still open. We use it as any
other term, and, eventually, it will be assigned to an actual value, or the whole proof has failed.
Furthermore, this means that the usual mechanism for filling in automatically metavariables when
unifying them with other expressions will solve goals whose value can be implicitly determined, if
it suitable that this happens7.

Hence, line 10-13, we create a new goal, by creating a new metavariable. We close the old goal,
by assigning it a partial proof term (because it depends on the newly created goal, which is still
open), and then update the goal state by removing the old one, and inserting the new one in place.

3.3 Homotopy type theory
To have a fully functional 2LTT implementation, we still need to postulate the axiom of univalence
in the object language. In order for this axiom to be of practical usage, it needs to be correctly
formulated, which involves proving a certain number of properties first about equivalences. Skipping
these details (which can be found in the formalization), we start by defining the canonical map
from the identity type to the equivalence type:

1 def canonical (α β : Typeₒ) : α =ₒ β →ₒ α ≃ₒ β := by
2 introₒ p -- Let p : α =ₒ β.
3 path_inductionₒ p -- By induction, we can assume α ≡ β.
4 exact Equivalence.refl α -- We conclude by observing that the identity function
5 -- is an equivalence.

Indeed, when stating univalence, we don’t want to just assert that there is an equivalence between
the identity type and the equivalence between types; we want to state, more precisely, that this
canonical map is an equivalence.

1 axiom univalence {α β : Typeₒ} : (canonical α β)�is_equiv

This, indeed, implies our original formulation
1 def eqv_eqv_eq {α β : Typeₒ} : (α ≃ₒ β) ≃ₒ (α =ₒ β) := by
2 apply Equivalence.symm
3 exhibitₒ canonical α β -- As an equivalence, we exhibit the canonical map,
4 exact univalence -- and prove it is indeed an equivalence using univalence.

To have a full implementation of HoTT, we would also need to support higher inductive types.
We have not implemented them because we didn’t need them in our work, but if we had to
implement them, we would have done as follows, given a higher inductive declaration:

• extract, from the declaration, the first-order part (that is, the constructors that do not
involve higher paths);

• use these constructors to build a hidden inductive type that would be the underlying type,
just as we did for regular inductive types;

• postulate every higher constructors;

• implement the induction principle, using the induction principle generated by the kernel for
our hidden inductive type;

• implement the computation rules of the induction principle, for the regular constructors;

• postulate the computation rules of the induction principle, for the higher constructors.

The advantage of implementing anything that can be implemented, rather than postulating it,
is that computation rules hold up to definitional equality, and not just propositional equality.
Also, this is compatible with our current implementation of inductive types, meaning that we
wouldn’t have to make a special case out of higher inductive types, simply add the support for
higher constructors.

7Sometime, goals are not meant to be implicitly solved.

8

3.4 Examples
To have an idea of how proofs in the two theories compare, consider the following example, which
is twice an implementation of natural number, one in each theory, their addition, and the proof
that it is associative.

1 inductiveₒ Natₒ where
2 | zero : Natₒ
3 | succ (n : Natₒ) : Natₒ
4
5 namespace Natₒ
6 def add (n m : Natₒ) : Natₒ :=
7 Natₒ.recₒ n (fun k => succ k) m
8
9 instance : Add Natₒ where

10 add := add
11
12 @[simp]
13 theorem add_zero (n : Natₒ) : n + zero = n := rfl
14
15 @[simp]
16 theorem add_succ (n m : Natₒ) : n + (succ m) = succ (n + m) := rfl
17
18 def add_assoc (n m k : Natₒ) : (n + m) + k =ₒ n + (m + k) := by
19 refine recₒ (motive := fun k => (n + m) + k =ₒ n + (m + k)) ?zero ?succ k
20 case zero =>
21 simp
22 rflₒ
23 case succ =>
24 intro k ih
25 rwₒ [ih]
26 rflₒ
27 end Natₒ

1 inductive Nat' where
2 | zero : Nat'
3 | succ (n : Nat') : Nat'
4
5 namespace Nat'
6 def add (n m : Nat') : Nat' :=
7 match m with
8 | zero => n
9 | succ m => succ <| add n m

10
11 instance : Add Nat' where
12 add := add
13
14 @[simp]
15 theorem add_zero (n : Nat') : n + zero = n := rfl
16
17 @[simp]
18 theorem add_succ (n m : Nat') : n + (succ m) = succ (n + m) := rfl
19
20 def add_assoc (n m k : Nat') : (n + m) + k = n + (m + k) := by
21 induction k
22 case zero =>
23 simp
24 case succ k ih =>
25 simp
26 rw [ih]
27 end Nat'

3.5 Soundness of the embedding
Our implementation of 2LTT is sound in that we could syntactically translate every term built
using the two languages that we expose into 2LTT’s syntax. This wouldn’t be true if, when
writing the terms, the implementation details were exposed: indeed, if that were the case, it would

9

be trivial to build an equivalence between Nat and Natₒ (which is undecidable in 2LTT). What
prevents “normal” users from doing so is that those implementation details live in namespaces
that are impossible to write out normally in Lean, akin to how the private keyword works. We
deviate slightly from the behavior of the private keyword, though, because this restriction doesn’t
hold anymore in the elaborator. There are no mechanisms in Lean to truly hide implementation
details, because the kernel has no notion of visibility of declarations8. This means that somehow
doing meta programming could break soundness. Hence, we have used a “hiding” scheme slightly
different from that used by private, so that no one accidentally breaks the abstraction layer.

Furthermore, we guarantee that (if one adheres to the interface we provide, and doesn’t try too
hard to break through it), our implementation is sound, because we publicly expose exactly what
is postulated to exist in 2LTT.

Furthermore, although we haven’t proved the soundness of our implementation (which would
involve embedding our whole implementation in a proof assistant), we never postulate anything
except for the axiom of univalence, contrary to how some other implementations of 2LTT are
actually implemented. This means that we can be confident that we haven’t accidentally postulated
an inconsistent object.

4 Definition of semi-simplicial types in 2LTT
The trick to stating that it is impossible to define semi-simplicial types in HoTT is defining
semi-simplicial types in 2LTT, and stating that there is no object in the HoTT fragment of 2LTT
that is equal to the object we have just defined. Unfortunately, we cannot directly compare
something that lives in HoTT with something that lives outside of HoTT so, instead, we are going
to build a family of “properties” of semi-simplicial types, such that each of these “properties” lives
in the HoTT fragment. Then, our statement will be that there is no similar family of properties
that lives in the HoTT fragment (that is, the whole family lives in the object language, not just
pointwise). This implies that there is no object in HoTT that has similar properties to that that
we have defined in 2LTT.

To be specific, the properties that we will consider are the truncation of semi-simplicial types
up to a certain dimension, the type of semi-simplicial types being the colimit of these truncations.
We will show that each of these truncations lives in HoTT.

A byproduct of this construction is that we can easily generate terms in HoTT that define
arbitrarily high truncation of semi-simplicial types, due to the conservativity property of 2LTT
over HoTT. While it was already possible to do this by hand before, it is very tiresome to do so,
especially because, to the best of our knowledge, the best size of the definition of semi-simplicial
types truncated to a certain dimension that we currently know is exponential in the dimension,
and the scheme for generating these definitions by hand is not trivial.

Since we will define semi-simplicial types as presheaves over the semi-simplicial category, we will
start with some preliminary definitions, notations and facts about the fragment of category theory
that will be useful to our work.

4.1 Preliminary notions and notations

We will use the notation
⎡
⎢
⎢
⎣

𝑎0 ∶ 𝜏0
𝑎1 ∶ 𝜏1(𝑎0)

⋮
𝑎𝑛 ∶ 𝜏𝑛(𝑎0, 𝑎1, … , 𝑎𝑛−1)

to refer to an anonymous structure type, as

well as 𝑎𝑖 for the projections of such type. If we need a canonical choice for such a type, we can

8The kernel has a similar feature, called opaque declarations, but those completely hide implementation details
including for the kernel, so an opaque declaration is basically useless. Indeed, opaque declarations are mainly
used to encode FFI calls in the kernel.

10

consider such a type to be defined as being

∑
𝑎0∶𝜏0

∑
𝑎1∶𝜏1(𝑎0)

⋯ ∑
𝑎𝑛−1∶𝜏𝑛−1(𝑎0,…,𝑎𝑛−2)

𝜏𝑛(𝑎0, 𝑎1, … , 𝑎𝑛−1)

For a category 𝐶, and 𝑥, 𝑦 ∶ 𝐶 two objects in 𝐶, we will denote by 𝐶(𝑥, 𝑦) the type of morphisms
in 𝐶 from 𝑥 to 𝑦.

For 𝑛 ∶ ℕ, we will note
[𝑛] ∶= {𝑘 ∶ ℕ ∣ 𝑘 < 𝑛}

the canonical finite type of cardinal 𝑛, which is called Fin n in Lean.

4.1.1 Presheaves and their limits

Definition 4.1 (presheaf). A presheaf over a category 𝐶 is a functor 𝐶op → Type.

Definition 4.2 (Category of elements). Let 𝐶 be a category, and 𝐹 be a presheaf over 𝐶. We
note by ∫ 𝐹 the category of elements of 𝐹, whose points are the (dependent) couples (𝑥, 𝑎) where
𝑥 ∶ 𝐶 and 𝑎 ∶ 𝐹(𝑥), and whose morphisms

(∫ 𝐹) ((𝑥, 𝑎), (𝑦, 𝑏)) = {𝑓 ∶ 𝐶(𝑥, 𝑦) ∣ 𝐹 (𝑓)(𝑏) = 𝑎}

The category of elements of a presheaf is interesting, because it corresponds exactly to the shape
over which we have an explicit formula for the limit of the said presheaf.

Lemma 4.3. Let 𝐽 be a category, and 𝐴, 𝐹 ∶ Psh(𝐽). Then

lim
(𝑗,𝑎)∶∫𝐴

𝐹(𝑗) ≅ Psh(𝐽)(𝐴, 𝐹)

In particular, this means that we can compute the “regular” (or non-weighted) limit of a presheaf,
by choosing accordingly the presheaf 𝐴:

Lemma 4.4. Let 𝐽 be a category, and 1 be the constant unit presheaf over 𝐽. Then

∫ 1 ≅ 𝐽

Proof. The natural functors between the two categories are easily shown to be each other’s
inverse.

Let us now prove Lemma 4.3

Proof. Consider the cone defined by, for every 𝑗 ∶ 𝐽 and 𝑎 ∶ 𝐴(𝑗),

Psh(𝐽)(𝐴, 𝐹) 𝐹(𝑗)
𝜙𝑗,𝑎

where 𝜙𝑗,𝑎(𝑢) ≃ 𝑢(𝑗)(𝑎) for 𝑢 ∶ Psh(𝐽)(𝐴, 𝐹).
To show that we have properly defined a cone, be need to show that, for 𝑖, 𝑗 ∶ 𝐽, 𝑎𝑖 ∶ 𝐴(𝑖),

𝑎𝑗 ∶ 𝐴(𝑗) and 𝑓 ∶ 𝑖 → 𝑗 such that 𝐴(𝑓)(𝑎𝑗) = 𝑎𝑖, the following diagram commutes

𝐹(𝑖)

Psh(𝐽)(𝐴, 𝐹)

𝐹(𝑗)

𝜙𝑖,𝑎𝑖

𝜙𝑗,𝑎𝑗

𝐹(𝑓)

11

By extensionality, it suffices to have the result pointwise. Let 𝑢 ∶ Psh(𝐽), we have to check that

𝜙𝑖,𝑎𝑖
(𝑢) = 𝐹(𝑓)(𝜙𝑗,𝑎𝑗

(𝑢))

= 𝐹(𝑓)(𝑢(𝑗)(𝑎𝑗))
= (𝐹(𝑓) ∘ 𝑢(𝑗))(𝑎𝑗)

and, since we also have

𝜙𝑖,𝑎𝑖
(𝑢) = 𝑢(𝑖)(𝑎𝑖)

= 𝑢(𝑖)(𝐴(𝑓)(𝑎𝑗))
= (𝑢(𝑖) ∘ 𝐴(𝑓))(𝑎𝑗)

which follows from the naturality of 𝑢

𝐴(𝑗) 𝐴(𝑖)

𝐹(𝑗) 𝐹(𝑖)

𝐴(𝑓)

𝑢(𝑗) 𝑢(𝑖)
𝐹(𝑓)

We now need to show that this cone is a limit cone. Let 𝑋 ∶ Type and, for every 𝑗 ∶ 𝐽 and
𝑎𝑗 ∶ 𝐴(𝑗),

𝑋 𝐹(𝑗)
𝜓𝑗,𝑎𝑗

such that for every 𝑖, 𝑗 ∶ 𝐽, 𝑎𝑖 ∶ 𝐴(𝑖), 𝑎𝑗 ∶ 𝐴(𝑗) and every 𝑓 ∶ 𝐽(𝑖, 𝑗) such that 𝐴(𝑓)(𝑎𝑗) = 𝑎𝑖, the
following diagram commutes

𝐹(𝑖)

𝑋

𝐹(𝑗)

𝜓𝑖,𝑎𝑖

𝜓𝑗,𝑎𝑗

𝐹(𝑓)

We have to show that there exists a unique 𝜑 ∶ 𝑋 → Psh(𝐽)(𝐴, 𝐹) such that, for every 𝑗 ∶ 𝐽 and
𝑎𝑗 ∶ 𝐴(𝑗), the following diagram commutes

𝐹(𝑗)

𝑋 Psh(𝐽)(1, 𝐹)

𝜓𝑗,𝑎𝑗

𝜑

𝜙𝑗,𝑎𝑗

If such a 𝜑 exists, it satisfies, for every 𝑥 ∶ 𝑋,

𝜓𝑗,𝑎𝑗
(𝑥) = 𝜙𝑗,𝑎𝑗

(𝜑(𝑥))

= 𝜑(𝑥)(𝑗)(𝑎𝑗)

which uniquely determines it. In fact, by letting 𝜑 be defined exactly as such, it trivially makes
the former diagram commute. Hence Psh(𝐽)(𝐴, 𝐹) is indeed a limit of 𝐹 ∘ 𝜋1.

In particular, we have an explicit formula for regular limits.

Corollary 4.4.1. Let 𝐽 be a category, and 𝐹 be a presheaf over 𝐽. Then

lim 𝐹 ≅ Psh(𝐽)(1, 𝐹)

12

Proof.

Psh(𝐽)(1, 𝐹) ≅ lim
(𝑗,∗)∶∫1

𝐹(𝑗) by Lemma 4.3

≅ lim
𝑗∶𝐽

𝐹(𝑗) by Lemma 4.4

4.1.2 Semi-simplicial category

Definition 4.5 (Semi-simplicial category). Let Δ+ be the category whose objects are natural
numbers. Given 𝑛, 𝑚 ∶ Δ+, the morphisms between 𝑛 and 𝑚 are strictly monotone functions from
[𝑛] to [𝑚].

In a “classical” setting (ie. in set theory, or in a type theory with UIP), we would define
semi-simplicial types (or sets) as presheaves over the semi-simplicial category. In this case, if we
unfold the definition, a semi-simplicial type is a type family (𝑋𝑛)𝑛∶ℕ ∶ ℕ → Type, alongside border
operators for every dimension 𝑛 ∶ ℕ, and 𝑘 ∶ [𝑛], 𝜕𝑛

𝑘 ∶ 𝑋𝑛+1 → 𝑋𝑛, that satisfies a commutativity
condition: for every 𝑛 ∶ ℕ, and 𝑖 < 𝑗 < 𝑛 + 1,

𝜕𝑛
𝑖 ∘ 𝜕𝑛+1

𝑗 = 𝜕𝑛
𝑗−1 ∘ 𝜕𝑛+1

𝑖

In HoTT, though, this is not enough. The following cube is automatically filled if we have UIP,
but not in HoTT.

𝑛 + 3 𝑛 + 2

𝑛 + 2 𝑛 + 1

𝑛 + 2 𝑛 + 1

𝑛 + 1 𝑛

𝜕𝑛+2
𝑖

𝜕𝑛+2
𝑗

𝜕𝑛+2
𝑘 𝜕𝑛+1

𝑖
𝜕𝑛+1

𝑘−1
𝜕𝑛+1

𝑗−1

𝜕𝑛+1
𝑘−1

𝜕𝑛+1
𝑖

𝜕𝑛+1
𝑗

𝜕𝑛
𝑖𝜕𝑛

𝑗−1

𝜕𝑛
𝑘−2

We could enforce the equality between these paths as an additional condition for being a semi-
simplicial type, but then there would have a similar problem with the composition of four border
operations, then five, then so forth, and the diagrams that have to be filled become increasingly
complex. We call this unfolding in higher and higher dimension of coherence paths an infinite
tower of higher-dimension equalities. From a categorical perspective, this is an instance of the
difference between a functor and an ∞-functor between ∞-groupoids, the latter having an infinity
of isomorphism up to higher isomorphism conditions in place of equalities.

4.1.3 Direct categories

In what follows, we will be interested in diagrams over direct categories.

Definition 4.6 (direct category). A category 𝐶 is said to be direct if there is a rank functor
𝜑 ∶ 𝐶 → 𝜔 that reflect identities, that is, for every 𝑥, 𝑦 ∶ 𝐶, if we have a morphism 𝑓 ∶ 𝑥 → 𝑦 such
that 𝜑(𝑥) = 𝜑(𝑦), then 𝑓 is the identity, that is, (𝑦, 𝑓) = (𝑥, id𝑥) (note that this is an equality
between dependent pairs). For 𝑥 ∶ 𝐶, we say that 𝜑(𝑥) is the rank of 𝑥.

For 𝑛 ∶ ℕ, we note 𝐶<𝑛 for the full subcategory of objects whose rank is less than 𝑛, and 𝐶=𝑛

for the type of objects whose rank is exactly 𝑛. The latter is also a full subcategory of 𝐶, but since
it is also a discrete category, its categorical structure is not very interesting.

Example 4.7. Δ+ is a direct category.

13

Proof. The rank functor simply maps 𝑛 ∶ Δ+ to 𝑛. It is a rank functor because

• for 𝑛, 𝑚 ∶ ℕ, if there is a strictly monotone function from [𝑛] to [𝑚], then 𝑛 ≤ 𝑚;

• for 𝑛 ∶ ℕ, the only strictly monotone function from [𝑛] to itself is the identity.

For the rest of the article, 𝐷 will be a direct category.

Definition 4.8. 𝐷 is said to have finite layers if, for every 𝑛 ∶ ℕ, 𝐷=𝑛 is finite.

Example 4.9. Δ+ has finite layers. Indeed, each layer is just a singleton.

Direct categories are interesting because we can “peel them layer by layer”, ie. we can do prove
theorems on truncated direct categories by induction on the rank up to which we have truncated.
In particular, what interests us are the presheaves on direct categories, so we want to be able to
characterize the presheaves overs 𝐷<𝑛+1 using the presheaves over 𝐷<𝑛. We therefore introduce the
type of layered presheaves up to rank 𝑛 + 1: it’s the presheaves up to rank 𝑛, plus the information
on the extra layer 𝐷=𝑛. Because we are talking about functors, this extra information consists of:

• the map on objects of the layer 𝐷=𝑛;

• the map on morphisms (because a direct category reflects identity, the only information that
we need is how the functor behaves on morphisms whose origin is in lower layers);

• some coherence equalities, to ensure that this extra information still behaves like a functor.

Definition 4.10. For 𝑛 ∶ ℕ, we let

LPsh𝑛(𝐷) ∶=
⎡
⎢⎢⎢
⎣

X ∶ Psh(𝐷𝑛)
Y ∶ 𝐷=𝑛 → Type
u ∶ ∏𝑖∶𝐷=𝑛 ∏𝑗∶𝐷<𝑛(𝑗 → 𝑖) → (𝑌 (𝑖) → 𝑋(𝑗))

coh ∶ ∏𝑖∶𝐷=𝑛 ∏𝑗,𝑗′∶𝐷<𝑛 ∏𝑓∶𝑗→𝑖 ∏𝑔∶𝑗′→𝑗 X(𝑔) ∘ u𝑖,𝑗(𝑓) = u𝑖,𝑗′(𝑔 ∘ 𝑓)

Our definition is built exactly so that we have the following equivalence.

Lemma 4.11. Let 𝑛 ∶ ℕ. We have

Psh(𝐷<𝑛+1)
𝑒𝑛≃ LPsh𝑛(𝐷)

Proof. Let 𝑠 ∶ Psh(𝐷<𝑛+1) → LPsh𝑛(𝐷) be defined, for 𝐹 ∶ Psh(𝐷<𝑛+1), by

𝑠(𝐹) = ⎡⎢
⎣

X = 𝐹 ∘ 𝜄𝑛 where 𝜄𝑛 is the inclusion functor
Y = 𝑖 ↦ 𝐹(𝑖)
u = (𝑖, 𝑗, 𝑓) ↦ 𝐹(𝑓)

Additionally, the coherence conditions stems directly from the functoriality of 𝐹.
Conversely, let’s define 𝑢 ∶ LPsh𝑛(𝐷) → Psh(𝐷<𝑛+1). Let 𝐺 ∶ LPsh𝑛(𝐷). For 𝑖 ∶ 𝐷𝑛+1. We

define 𝑢(𝐺)(𝑖) by

𝑢(𝐺)(𝑖) = {
𝐺.X(𝑖) if 𝜑(𝑖) < 𝑛
𝐺.Y(𝑖) otherwise

For 𝑖, 𝑗 ∶ 𝐷<𝑛+1 and 𝑓 ∶ 𝑖 → 𝑗. We define 𝑢(𝐺)(𝑓) by case distinction.

• If 𝜑(𝑖) = 𝑛, because

𝜑(𝑖) ≤ 𝜑(𝑗) by functoriality of 𝜑
≤ 𝑛 by definition of 𝐷<𝑛+1

we have 𝜑(𝑗) = 𝑛. By identity reflection, 𝑖 = 𝑗 and 𝑓 = id𝑗. So we can just define
𝑢(𝐺)(𝑓) = id𝑢(𝐺)(𝑗).

14

• Otherwise, if 𝜑(𝑗) = 𝑛, we can define

𝑢(𝐺)(𝑓) = 𝐺.u𝑖,𝑗(𝑓)

• Otherwise, we can define
𝑢(𝐺)(𝑓) = 𝐺.X(𝑓)

This is functorial. It is clear that it maps identities to identities. Furthermore, given 𝑖, 𝑗, 𝑘 ∶ 𝐷<𝑛+1,
𝑓 ∶ 𝑖 → 𝑗 and 𝑔 ∶ 𝑗 → 𝑘,

• either they all have a rank less than 𝑛, in which case

𝑢(𝐺)(𝑔 ∘ 𝑓) = 𝐺.X(𝑔 ∘ 𝑓) = 𝐺.X(𝑔) ∘ 𝐺.X(𝑓) = 𝑢(𝐺)(𝑔) ∘ 𝑢(𝐺)(𝑓)

• or exactly one of them has a rank equal to 𝑛, in which case it must be 𝑘, and the functoriality
is given by 𝐺.coh𝑘,𝑗,𝑖;

• or two or more of them have a rank equal to 𝑛, in which case 𝑔 is an identity morphism, and
the identity becomes trivial.

It is clear that 𝑠 and 𝑢 are inverse of each other, because the coherence type is a mere proposition
(because we have uniqueness of identity proof in the meta theory).

4.2 Fibrant types
In consistency with the outer point of view, we’ll call outer types that are lifts of object types
fibrant. More specifically, we’ll distinguish between strict fibrancy and weak fibrancy.

Definition 4.12 (Fibrant types). Let

is-fibrantstrict(𝛼) = [𝛼o ∶ Typeo
𝑐 ∶ 𝛼 = ↑𝛼o

is-fibrantweak(𝛼) = [𝛼o ∶ Typeo
𝑐 ∶ 𝛼 ≃ ↑𝛼o

We can extend this definition from types to maps.

Definition 4.13 (Fibrations). A map 𝑓 ∶ 𝑋 → 𝑌 is said to be a (strict) fibration if each of its
fibers are (strictly) fibrant.

Definition 4.14 (Reedy presheaves). Let 𝐷 be a direct category. A presheaf 𝑋 ∶ Psh(𝐷) is said to
be Reedy if, for every 𝑖 ∶ 𝐷, can𝑖,𝑋 is a strict fibration, where can𝑖,𝑋 ∶ 𝑋𝑖 → M𝑖 𝑋 is the canonical
map.

4.2.1 Layered presheaf lemmas

Lemma 4.15. Let 𝐷 be a direct category and 𝑛 ∶ ℕ.

Pshrd(𝐷<𝑛+1) ≃

⎡
⎢
⎢
⎢
⎢
⎢
⎣

X ∶ Psh(𝐷<𝑛)
reedy ∶ ∏𝑖∶𝐷<𝑛 is-fibration(can𝑖,X)

Y ∶ 𝐷=𝑛 → Type
u ∶ ∏𝑖∶𝐷=𝑛 ∏𝑗∶𝐷<𝑛(𝑗 → 𝑖) → (Y(𝑖) → X(𝑗))

coh ∶ ∏𝑖∶𝐷=𝑛 ∏𝑗,𝑗′∶𝐷<𝑛 ∏𝑓∶𝑗→𝑖 ∏𝑔∶𝑗′→𝑗 X(𝑔) ∘ u𝑖,𝑗(𝑓) = u𝑖,𝑗′

fib ∶ ∏𝑖∶𝐷=𝑛 is-fibration(can𝑖,𝑒−1
𝑛 (X,Y,u,coh))

15

Proof. The direct part of the equivalence is obtained by reusing the previously defined equivalence
𝑒𝑛, seeing that the only things that we have more than in LPsh𝑛(𝐷) are the Reedy fibrancy
conditions, which are verified because we consider Reedy fibrant presheaves to start with.

The reverse direction is, similarly, obtained by building a presheaf in Psh(𝐷<𝑛+1) first, using
𝑒−1

𝑛 , and then proving it is Reedy fibrant, which stems directly from the additional information we
have stored.

Lemma 4.15 states that Reedy presheaves below 𝑛 + 1 are exactly Reedy presheaves below 𝑛
plus some glueing information (the same as for regular presheaves), plus some fibrancy conditions
on that glueing information. However, it turns out that this fibrancy condition allows us to
reformulate the glueing in a much more compact way, that is, we can encode it by storing just
the (fibrant) fibers over a matching object. The following definition and statement will make this
intuition clearer.

Definition 4.16 (Matching object). Let 𝑖 ∶ 𝐷, and 𝑋 be a presheaf over 𝐷<𝜑(𝑖). We define the
matching object M𝑖 𝑋 as being the limit of the composite

𝑖//𝐷 ↪ 𝐷<𝜑(𝑖) 𝑋
⟶ Type

where 𝑖//𝐷 is the “category (strictly) under 𝑖”, whose elements are couples (𝑗, 𝑓) where 𝑗 ∶ 𝐷 and
𝑓 ∶ 𝑗 → 𝑖, where 𝑗 ≠ 𝑖.

Theorem 4.17. Let 𝐷 be a direct category, and 𝑛 ∶ ℕ.

Pshrd(𝐷<𝑛+1) ≃ [X ∶ Pshrd(𝐷<𝑛)
glueing ∶ ∏𝑖∶𝐷=𝑛 M𝑖 X → Typeo

Proof. We will reuse the very last lemma. We want to show that the glueing field is exactly as
much information as the fields Y, u, coh and fib. More precisely, given a 𝑋 ∶ Pshrd(𝐷<𝑛), we want
to show that

∏
𝑖∶𝐷=𝑛

M𝑖 𝑋 → Typeo ≃
⎡
⎢
⎢
⎢
⎣

Y ∶ 𝐷=𝑛 → Type
u ∶ ∏𝑖∶𝐷=𝑛 ∏𝑗∶𝐷<𝑛(𝑗 → 𝑖) → (Y(𝑖) → 𝑋(𝑗))

coh ∶ ∏𝑖∶𝐷=𝑛 ∏𝑗∶𝐷<𝑛 ∏𝑓∶𝑗→𝑖 ∏𝑔∶𝑗′→𝑗 𝑋(𝑔) ∘ u𝑖,𝑗(𝑓) = u𝑖,𝑗′

fib ∶ ∏𝑖∶𝐷=𝑛 is-fibration(can𝑖,𝑒−1
𝑛 (𝑋,Y,u,coh))

For the forward direction, consider 𝑔 ∶ ∏𝑖∶𝐷=𝑛 M𝑖 𝑋 → Typeo a glueing. We let

𝑌 (𝑖) ∶≡ ∑
𝑧∶M𝑖 𝑋

𝑔𝑖(𝑧)

This precisely makes the canonical morphism a fibration. Furthermore, we define

𝑢𝑖,𝑗(𝑓) ∶≡ (𝑧, 𝑦) ↦ 𝜓𝑗,𝑓(𝑧)

where 𝜓𝑗,𝑓 ∶ M𝑖 𝑋 → 𝑋(𝑗) is the component of the cone over M𝑖 𝑋, at (𝑗, 𝑓). The coherence
condition coh is true because of the defining property of 𝜓 being a cone.

Conversely, consider 𝑙 ∶
⎡
⎢
⎢
⎢
⎣

Y ∶ 𝐷=𝑛 → Type
u ∶ ∏𝑖∶𝐷=𝑛 ∏𝑗∶𝐷<𝑛(𝑗 → 𝑖) → (Y(𝑖) → 𝑋(𝑗))

coh ∶ ∏𝑖∶𝐷=𝑛 ∏𝑗∶𝐷<𝑛 ∏𝑓∶𝑗→𝑖 ∏𝑔∶𝑗′→𝑗 𝑋(𝑔) ∘ u𝑖,𝑗(𝑓) = u𝑖,𝑗′

fib ∶ ∏𝑖∶𝐷=𝑛 is-fibration(can𝑖,𝑒−1
𝑛 (𝑋,Y,u,coh))

. For 𝑖 ∶ 𝐷=𝑛

and 𝑧 ∶ M𝑖 𝑋, we define 𝑔𝑖(𝑧) by
𝑔𝑖(𝑧) = fib𝜋1

(𝑧)

where 𝜋1 ∶ 𝑙.Y(𝑖) → M𝑖 𝑋

16

4.2.2 Fibrancy of the matching object

Theorem 4.18. Let 𝐷 be a direct category of finite height, 𝐴 a presheaf over 𝐷, and 𝑋 a (weakly)
Reedy fibrant presheaf over 𝐷. Psh(𝐷)(𝐴, 𝑋) is weakly fibrant.

To prove this theorem, we will need to “truncate” functors, in the same spirit as we “truncate”
a direct category 𝐷 up to a rank 𝑛: 𝐷<𝑛.
Definition 4.19 (skeleton functor). Let 𝑛 be a natural number, and 𝐴 a presheaf over 𝐷. We
define the skeleton functor Sk<𝑛(𝐴) as the presheaf over 𝐷 which only keeps elements of rank less
than 𝑛 in 𝑎, ie. for 𝑑 ∶ 𝐷

Sk<𝑛(𝐴)(𝑑) = {
𝐴(𝑑) if rank 𝑑 < 𝑛
0 otherwise

Proof. We will show that the function Psh(𝐷)(𝐴, 𝑋) → 1 is a fibration. To do so, we can consider
the (unique) morphism 0 → 𝐴 as follows

Sk<0(𝐴) 0

Sk<1(𝐴)

Sk<2(𝐴)

⋮

Sk<ℎ(𝐴) 𝐴

where ℎ ∶ ℕ is the height of 𝐷, and at each step the morphism is the subpresheaf morphism.
We can check that, for every 𝑛 < ℎ, the morphism from Sk<𝑛(𝐴) → Sk<𝑛+1(𝐴) is part of a

pushout

∐𝑖∶𝐷=𝑛 ∐𝑎∶𝐴(𝑖) 𝜕𝑖 Sk<𝑖(𝐴)

∐𝑖∶𝐷=𝑛 ∐𝑎∶𝐴(𝑖) y𝑖 Sk<𝑖+1(𝐴)

⌟

Indeed, this can be checked pointwise. Let 𝑑 ∶ 𝐷. We want to check that the following diagram is
a pushout

(∐𝑖∶𝐷=𝑛 ∐𝑎∶𝐴(𝑖) 𝜕𝑖)(𝑑) Sk<𝑛(𝐴)(𝑑)

(∐𝑖∶𝐷=𝑛 ∐𝑎∶𝐴(𝑖) y𝑖)(𝑑) (Sk<𝑛+1(𝐴))(𝑑)

If rank 𝑑 < 𝑖, then
(∐
𝑖∶𝐷=𝑛

∐
𝑎∶𝐴(𝑖)

𝜕𝑖)(𝑑) = ∑
𝑖∶𝐷=𝑛

∑
𝑎∶𝐴(𝑖)

𝐷(𝑑, 𝑖)

(∐
𝑖∶𝐷=𝑛

∐
𝑎∶𝐴(𝑖)

y𝑖)(𝑑) = ∑
𝑖∶𝐷=𝑛

∑
𝑎∶𝐴(𝑖)

𝐷(𝑑, 𝑖)

Sk<𝑛(𝐴)(𝑑) = 𝐴(𝑑)
Sk<𝑛+1(𝐴)(𝑑) = 𝐴(𝑑)

17

so the diagram is clearly a pushout

∑𝑖∶𝐷=𝑛 ∑𝑎∶𝐴(𝑖) 𝐷(𝑑, 𝑖) 𝐴(𝑑)

∑𝑖∶𝐷=𝑛 ∑𝑎∶𝐴(𝑖) 𝐷(𝑑, 𝑖) 𝐴(𝑑)

If rank 𝑑 = 𝑖, then

(∐
𝑖∶𝐷=𝑛

∐
𝑎∶𝐴(𝑖)

𝜕𝑖)(𝑑) = ∑
𝑖∶𝐷=𝑛

∑
𝑎∶𝐴(𝑖)

0 = 0

(∐
𝑖∶𝐷=𝑛

∐
𝑎∶𝐴(𝑖)

y𝑖)(𝑑) = ∑
𝑖∶𝐷=𝑛

∑
𝑎∶𝐴(𝑖)

𝐷(𝑑, 𝑖) = 𝐴(𝑑)

Sk<𝑛(𝐴)(𝑑) = 0
Sk<𝑛+1(𝐴)(𝑑) = 𝐴(𝑑)

so the diagram is a pushout

0 0

𝐴(𝑑) 𝐴(𝑑)

Finally, if rank 𝑑 > 𝑛, then

(∐
𝑖∶𝐷=𝑛

∐
𝑎∶𝐴(𝑖)

𝜕𝑖)(𝑑) = 0

(∐
𝑖∶𝐷=𝑛

∐
𝑎∶𝐴(𝑖)

y𝑖)(𝑑) = 0

Sk<𝑛(𝐴)(𝑑) = 0
Sk<𝑛+1(𝐴)(𝑑) = 0

Consider now the composition of morphisms that we obtain by applying Psh(𝐷)(−, 𝑋):

Psh(𝐷)(Sk<0(𝐴), 𝑋) 1

Psh(𝐷)(Sk<1(𝐴), 𝑋)

Psh(𝐷)(Sk<2(𝐴), 𝑋)

⋮

Psh(𝐷)(Sk<ℎ(𝐴), 𝑋) Psh(𝐷)(𝐴, 𝑋)

Because Psh(𝐷)(−, 𝑋) is continuous, each morphism at step 𝑛 < ℎ is part of a pullback:

Psh(𝐷)(Sk<𝑛+1(𝐴), 𝑋) ∏𝑖∶𝐷=𝑛 ∏𝑎∶𝐴(𝑖) Psh(𝐷)(y𝑖, 𝑋)

Psh(𝐷)(Sk<𝑛(𝐴), 𝑋) ∏𝑖∶𝐷=𝑛 ∏𝑎∶𝐴(𝑖) Psh(𝐷)(𝜕𝑖, 𝑋)
⌜

18

Because 𝑋 is Reedy fibrant, the map Psh(𝐷)(y𝑖, 𝑋) → Psh(𝐷)(𝜕𝑖, 𝑋) is a fibration.

Corollary 4.19.1. Let 𝐷 be a direct category of finite height, and 𝑋 a weakly Reedy fibrant
presheaf over 𝐷. 𝑋 has a fibrant limit.

Proof. By Theorem 4.18, Psh(𝐷)(1, 𝑋) is weakly fibrant, where 1 is the constant unit presheaf.

Corollary 4.19.2. Let 𝐷 be a direct category, 𝑖 ∶ 𝐷, and 𝑋 a Reedy fibrant presheaf over 𝐷<𝜑(𝑖).
M𝑖(𝑋) is weakly fibrant.

Proof. M𝑖(𝑋) is a limit of a presheaf over a direct category whose height is bounded by 𝜑(𝑖).
Hence, by Corollary 4.19.1, it is (weakly) fibrant.

4.3 Main result
Theorem 4.20. Let 𝐷 be a fibrant category such that, for every 𝑛 ∶ ℕ, 𝐷=𝑛 is cofibrant. Then,
for every 𝑛 ∶ ℕ, Pshrd(𝐷<𝑛) is weakly fibrant.

Proof. By induction on 𝑛. The case where 𝑛 = 0 is straightforward, because 𝐷<0 ≃ 0, hence
Pshrd(𝐷<0) ≃ 1 which is weakly fibrant.

Suppose this is true for 𝑛 ∶ ℕ. By Theorem 4.17, we have

Pshrd(𝐷<𝑛+1) ≃ [X ∶ Pshrd(𝐷<𝑛)
glueing ∶ ∏𝑖∶𝐷=𝑛 M𝑖(X) → Typeo

By Corollary 4.19.2, for any 𝑋 ∶ Pshrd(𝐷<𝑛), M𝑖(𝑋) is fibrant, so 𝑋 → Typeo is too. By
assumption, 𝐷=𝑛 is cofibrant, so ∏𝑖∶𝐷=𝑛 M𝑖(𝑋) → Typeo is fibrant too. By the induction hypothesis,
Pshrd(𝐷<𝑛) is fibrant. Because (weak) fibrancy is preserved by equivalence, Pshrd(𝐷<𝑛+1) is
fibrant.

Corollary 4.20.1. For 𝑛 ∶ ℕ, Pshrd(Δ<𝑛
+) is fibrant.

Proof. This is a direct consequence of Theorem 4.20, as Δ+ is a direct category with finite layers,
and as finite types are cofibrant [Ann+23, Lemma 3.25].

Definition 4.21 (Truncated semi-simplicial types). For any 𝑛 ∶ ℕ, Pshrd(Δ<𝑛
+), so there exists

a Δo𝑛 ∶ Typeo such that Pshrd(Δ<𝑛
+) ≃ ↑Δo𝑛. We define the truncated semi-simplicial types as

Δo ∶ ℕ → Typeo, defined by, for every 𝑛 ∶ ℕ,

Δo(𝑛) ≡ Δo𝑛

This allows us to state the following conjecture

Conjecture 4.22. There is no object-level truncated semi-simplicial type, ie a type family (𝜏𝑛)𝑛∶ℕo
such that, for every 𝑛 ∶ ℕ,

𝜏⟨𝑛⟩ = Δo(𝑛)

where ⟨−⟩ ∶ ℕ → ℕo is the natural map.

19

References
[Voe13] Vladimir Voevodsky. “A Simple Type System with Two Identity Types”. Unpublished

note. Feb. 23, 2013. url: https://www.math.ias.edu/vladimir/sites/math.ias.edu.
vladimir/files/HTS.pdf.

[Voe14] Vladimir Voevodsky. The Origins and Motivations of Univalent Foundations. Letter.
Oct. 3, 2014. url: https://www.ias.edu/ideas/2014/voevodsky-origins.

[Her15] Hugo Herbelin. “A Dependently-Typed Construction of Semi-Simplicial Types”. In: 25.5
(June 2015), pp. 1116–1131. issn: 0960-1295, 1469-8072. doi: 10.1017/S0960129514000528.

[ACK16] Thorsten Altenkirch, Paolo Capriotti, and Nicolai Kraus. “Extending Homotopy
Type Theory with Strict Equality”. In: 62 (2016), 21:1–21:17. issn: 1868-8969. doi:
10.4230/LIPICS.CSL.2016.21.

[Ahr+22] Benedikt Ahrens, Paige Randall North, Michael Shulman, and Dimitris Tsementzis.
The Univalence Principle. Aug. 29, 2022. doi: 10.48550/arXiv.2102.06275. arXiv:
2102.06275 [cs, math]. Pre-published.

[Kov22] András Kovács. “Staged Compilation with Two-Level Type Theory”. Aug. 29, 2022.
doi: 10.1145/3547641. arXiv: 2209.09729 [cs].

[Ann+23] Danil Annenkov, Paolo Capriotti, Nicolai Kraus, and Christian Sattler. “Two-Level
Type Theory and Applications”. Sept. 2023. doi: 10.1017/S0960129523000130. arXiv:
1705.03307 [cs].

[Usk23] Elif Uskuplu. Formalizing Two-Level Type Theory with Cofibrant Exo-Nat. Sept. 17,
2023. doi: 10.48550/arXiv.2309.09395. arXiv: 2309.09395 [cs, math]. Pre-published.

[Uni] Univalent Foundations Program. Homotopy Type Theory: Univalent Foundation of
Mathematics. url: https://homotopytypetheory.org/book.

20

https://www.math.ias.edu/vladimir/sites/math.ias.edu.vladimir/files/HTS.pdf
https://www.math.ias.edu/vladimir/sites/math.ias.edu.vladimir/files/HTS.pdf
https://www.ias.edu/ideas/2014/voevodsky-origins
https://doi.org/10.1017/S0960129514000528
https://doi.org/10.4230/LIPICS.CSL.2016.21
https://doi.org/10.48550/arXiv.2102.06275
https://arxiv.org/abs/2102.06275
https://doi.org/10.1145/3547641
https://arxiv.org/abs/2209.09729
https://doi.org/10.1017/S0960129523000130
https://arxiv.org/abs/1705.03307
https://doi.org/10.48550/arXiv.2309.09395
https://arxiv.org/abs/2309.09395
https://homotopytypetheory.org/book

	Introduction
	Contributions
	Overview

	Preliminary notions
	Homotopy type theory
	Two-level type theory

	Formalization of 2LTT in Lean
	The object language
	Object universe hierarchy
	Type formers
	Object inductive types

	Object level tactics
	Homotopy type theory
	Examples
	Soundness of the embedding

	Definition of semi-simplicial types in 2LTT
	Preliminary notions and notations
	Presheaves and their limits
	Semi-simplicial category
	Direct categories

	Fibrant types
	Layered presheaf lemmas
	Fibrancy of the matching object

	Main result

