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Homotopy Type Theory Type theory

Type theory

Type theory is a family of foundational theories for mathematics, based on
the abstract notion of type. A type is a general form of collection.

Set theory Type theory
n ∈ N n : N

𝜋 is a proof of P 𝜋 : P
N is a set N : Type
bijection equivalence
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Homotopy Type Theory Origins

Origins

Voevodsky introduced homotopy type theory to formalize “up to
isomorphism” reasoning in proof assistants.

The goal is to work in
mathematics in which “up to isomorphism” holds trivially, so no gory
details should be provided.
The solution is simple: make the equality equivalent to the equivalences!

(A ≃ B) ≃ (A = B)
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Homotopy Type Theory Equality in HoTT

Equality in HoTT
A type should be thought of as a space, and two points of the space are
considered equal if there is a path between them.

̸=
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Semi-simplicial types What about simplicial sets?

What about simplicial sets?

Simplicial sets are:
basic tools;
yet very useful in homotopy theory.

We would like to have an object that serves the same purpose in HoTT.
Let’s start with semi-simplicial types.
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Semi-simplicial types Formal specification

Formal specification

A semi-simplicial type is the data of
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Semi-simplicial types Higher problems

Higher problems
Given n : N, and i < j < k ≤ n + 3,
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Semi-simplicial types The impossible conjecture

The impossible conjecture

So far, no one has managed to define semi-simplicial types in homotopy
type theory.

We would like to conjecture that it is impossible to define semi-simplicial
types in homotopy type theory. How do you state this conjecture, in
homotopy type theory?

It is impossible to define semi-simplicial types.

But this is self-contradictory!
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Two-level type theory The meta trick

The meta trick

Let’s step back.

2
R

Sn
≤

n + 1 = 1 + n

f ≡ 𝜆x .f (x)

2
R

Sn
≤

n + 1 = 1 + n
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Two-level type theory Lifting HoTT to an outer theory

Lifting HoTT to an outer theory

The “trick” is to embed our meta tools used to speak of semi-simplicial
types into the theory itself. This results into a strengthening of HoTT,
called two-level type theory.

“≡”

=
p q

≃

Σ
Π

N

S1

Homotopy type theory can be lifted in the two-level type theory.
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Two-level type theory Stating the conjecture

Stating the conjecture

We now have a strategy to state the conjecture:

define the type of
semi-simplicial types in 2LTT
break it into fragments
push them into HoTT
state “there is no collection of
objects in HoTT that is
pointwise equal to the collection
of fragments”

̂︀Δ
̂︀Δ̂︀Δ̂︀Δ̂︀Δ

̂︀Δ̂︀Δ̂︀Δ̂︀Δ

on ̸=

If there was such a think such as semi-simplicial types directly in HoTT,
we could also break it
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Two-level type theory The Reedy way (1/2)

The Reedy way (1/2)

We now have to break semi-simplicial types into fragments that fit into
HoTT. To do so, we present semi-simplicial types in the Reedy fashion.

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A0 : Type
A1 : A0 → A0 → Type
A2 : (x : A0) → (y : A0) → (z : A0)

→ A1(x , y) → A1(x , z) → A1(y , z) → Type
A3 : (x , y , z, w : A0) → (s1 : A1(x , y)) → (s2 : A1(x , z)) → (s3 : A1(x , w))

→ (s4 : A1(y , z)) → (s5 : A1(y , w)) → (s6 : A1(z, w))
→ A2(x , y , z, s1, s2, s4) → A2(x , y , w , s1, s3, s5)
→ A2(x , z, w , s2, s3, s6) → A2(y , z, w , s4, s5, s6)
→ Type

...
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Two-level type theory The Reedy way (2/2)

The Reedy way (2/2)

These objects are called very dependent types. It is unknown whether they
can be formulated directly in HoTT, and even whether they are consistent
in it!

But we can generate the signature of each level using the meta language.
The fragments of the semi-simplicial types are simply the truncation up to
An, for every n : N.
The bulk of the work is showing that these fragments “fit” in HoTT.
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