Notes on LCCC

Adrien Mathieu

Contents

1.	Introduction	1
	1.1. Preliminary notions	1
	1.1.1. Change of base functor	
	1.2. Main theorem	2
2.	The direct part of the equivalence	2
	2.1. Pullbacks	2
	2.2. Dependent product	3
	2.2.1. Definition	3
	2.2.2. Adjunction	3

1. Introduction

1.1. Preliminary notions

1.1.1. Change of base functor

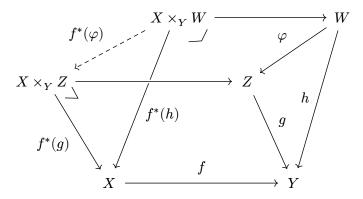
For this section, assume that we have a category \mathcal{C} which has pullbacks. Let X, Y be two objects in \mathcal{C} , and $f: X \to Y$. We can build

$$f^*: \mathcal{C}/Y \longrightarrow \mathcal{C}/X$$

the "base change" functor as follows: let $g: Z \to Y$ be an element of \mathcal{C}/Y .

$$\begin{array}{c|ccc}
X \times_Y Z & \longrightarrow & Z \\
f^*(g) & \downarrow & \downarrow g \\
X & \longrightarrow & Y
\end{array}$$

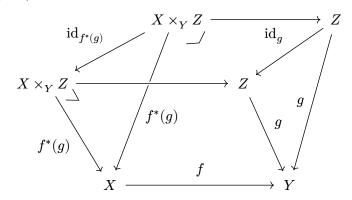
Furthermore, if $h:W\to Y$ is an other element of \mathcal{C}/Y and $\varphi:h\to g$, by pullback, there exists a unique $f^*(\varphi):X\times_YW\to X\times_YZ$ making the following diagram commute



hence, $f^*(\varphi)$ is a morphism $f^*(h) \longrightarrow f^*(g)$.

Lemma 1.1.1.1: f^* defines a functor.

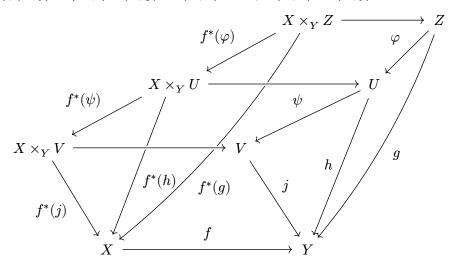
Proof: Let $(Z,g): \mathcal{C}/Y$. Note that the following diagram commutes



thus $\mathrm{id}_{f^*(g)}$ satisfies the universaly property of $f^*\big(\mathrm{id}_g\big),$ and so

$$f^*\big(\mathrm{id}_g\big)=\mathrm{id}_{f^*(g)}$$

Let $(U,h),(V,j):\mathcal{C}/Y,\,\varphi:(Z,g)\to(U,h)$ and $\psi:(U,h)\to(V,j)$.



Note that the topmost outer rectangle commutes because both inner square commute, and that the leftmost, outermost triangle commutes too because both inner triangle commute, making $f^*(\psi) \circ f^*(\varphi)$ satisfy the same universal condition as $f^*(\psi \circ \varphi)$, so

$$f^*(\varphi\circ\varphi)=f^*(\psi)\circ f^*(\varphi)$$

1.2. Main theorem

Definition 1.2.1 (Locally Cartesian Closed Category): A category \mathcal{C} is *locally cartesian closed* if, for any object $X : \mathcal{C}$, the category \mathcal{C}/X is cartesian closed.

Theorem 1.2.2: A category \mathcal{C} is locally cartesian closed if, and only if, it has

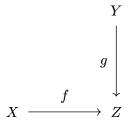
- pullbacks;
- for any morphism $f: X \to Y$ in \mathcal{C} , the functor f^* has a right adjoint Π_f , called the dependent product at f.

2. The direct part of the equivalence

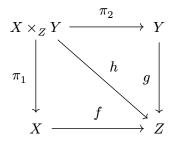
Suppose we have a locally cartesian closed category \mathcal{C} .

2.1. Pullbacks

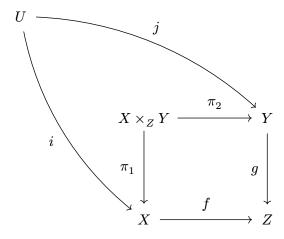
Let's show that $\mathcal C$ has pullbacks. Let f,g be morphisms in $\mathcal C$ spelling out the following diagram



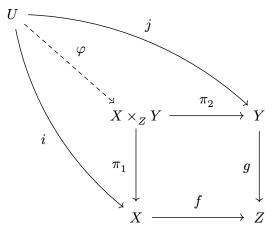
Since \mathcal{C}/Z is cartesian closed, there exists a $(X \times_Z Y, h) : \mathcal{C}/Z$ the cartesian product of (X, f) and (Y, g), with projections π_1 and π_2 :



This latter square (if we forget about h) is a pullback. Indeed, for any $U: \mathcal{C}, i: U \to X$ and $j: U \to Y$ making the following diagram commute



Let $h'=g\circ j=f\circ i$. Note that $j:(U,h')\to (Y,g)$ and $i:(U,h')\to (X,f)$ in \mathcal{C}/Z , so by cartesianity, there exists a unique $\varphi:(U,h')\to (X\times_ZY,h)$ such that $\pi_2\circ\varphi=j$ and $\pi_1\circ\psi=i$, that is, the following diagram commutes



Note that any φ making the two triangles commute is also a morphism $(U, h') \to (X \times_Z Y, h)$ in \mathcal{C}/Z , so φ is indeed unique in \mathcal{C} .

2.2. Dependent product

2.2.1. Definition

Let $f: X \to Y$ be a morphism in \mathcal{C} , let us define the functor

$$\Pi_f:\mathcal{C}/X\longrightarrow\mathcal{C}/Y$$

Consider a $(Z, p) : \mathcal{C}/X$.

2.2.2. Adjunction