Notes on Grothendieck Fibrations

Adrien Mathieu

Contents

1.	Introduction	1
	1.1. Preliminary definitions	1
	1.2. Main theorem	4
2.	Fiber functor	5
	2.1. Action of Φ on objects	5
	2.1.1. Definition of the fibre pseudo-functor	5
	2.1.2. Pseudo identity law	7
	2.1.3. Pseudo-composition law	9
	2.1.4. Identity/composition coherence	11
	2.1.4.1. Upper triangle	
	2.1.4.2. Lower triangle	12
	2.1.5. Composition/composition coherence	13
	2.2. Action of Φ on morphisms	
	2.2.1. ν_f^F is an isomorphism	
	2.2.1.1. Naturality	15
	2.2.1.2. Coherences	16
	2.2.1.3. Iso	18
3.	Grothendieck construction	18
	3.1. Action of Ψ on objects	19
	3.2. Action of Ψ on morphisms	23
4.	The equivalence	25
	4.1. $\Phi \circ \Psi$	25
	4.2. $\Psi \circ \Phi$	31

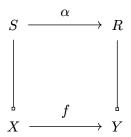
1. Introduction

1.1. Preliminary definitions

In this section, we have two categories \mathcal{B} and \mathcal{E} , and a functor $p:\mathcal{E}\to\mathcal{B}$.

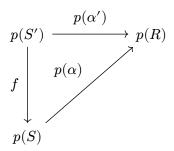
Definition 1.1.1 (Refinement): Let $R:\mathcal{E}$ and $X:\mathcal{B}$. We say that R refines X, or $R \sqsubset X$, if X=p(R)

We note $R \longrightarrow X$ to mean $R \subseteq X$, and we say that the following diagram commutes

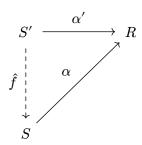


if $f = p(\alpha)$.

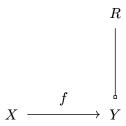
Definition 1.1.2 (Cartesian morphism): Let $R, S : \mathcal{E}$. A morphism $\alpha : S \to R$ is *cartesian* if, for any $S' : \mathcal{E}$, $\alpha' : S' \to R$, and $f : p(S') \to p(S)$ such that the following diagram commutes



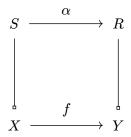
There exists a unique $\hat{f}: S' \to S$ such that $f = p(\hat{f})$, and such that the following diagram commutes



Definition 1.1.3 (Fibration): *p* is said to be a *fibration* if, for any

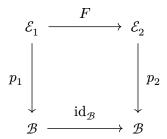


there exists a cartesion morphism α making the following commute



Definition 1.1.4 (Category of fibrations): For a base category \mathcal{B} , define $\mathbf{Fib}_{\mathcal{B}}$ as the category of fibrations over \mathcal{B} , that is, whose objects are pairs (\mathcal{E}, p) with \mathcal{E} a category and $p: \mathcal{E} \to \mathcal{B}$ a fibration.

Given two fibrations $p_i: \mathcal{E}_i \to \mathcal{B}$ over \mathcal{B} for i=1,2, a morphism of fibrations between p_1 and p_2 is a functor $F: \mathcal{E}_1 \to \mathcal{E}_2$ making the following diagram commute



and which preserves cartesianity of morphisms.

Definition 1.1.5 (Category of pseudofunctors): For a given base category \mathcal{B} , define $\mathbf{Pfct}_{\mathcal{B}}$ as the category whose elements are contravariant pseudo-functors $\mathcal{P}: \mathcal{B}^{\mathsf{op}} \to \mathbf{Cat}$ in \mathbf{Cat} , that is,

- for each object $X : \mathcal{B}$, a category \mathcal{P}_X ;
- for each morphism $f: X \to Y$ in \mathcal{B} , a functor $\mathcal{P}_f: \mathcal{P}_Y \to \mathcal{P}_X$;
- for each object $X : \mathcal{B}$, a natural isomorphism

$$i_X: \mathcal{P}_{\mathrm{id}_X} \Longrightarrow \mathrm{id}_{\mathcal{P}_X}$$

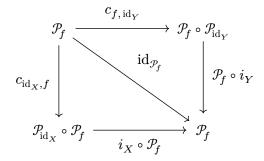
called the pseudo unit of \mathcal{P} at X;

• for each morphisms $f: X \to Y$ and $g: Y \to Z$ in \mathcal{B} , a natural isomorphism

$$c_{f,q}:\mathcal{P}_{g\circ f}\Longrightarrow\mathcal{P}_{f}\circ\mathcal{P}_{g}$$

called the pseudo composition law of \mathcal{P} at f and g.

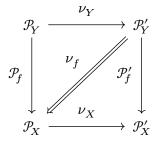
We additionally require the following coherence conditions: for $f: X \to Y$, the following diagram commutes



Furthermore, for $f: W \to X$, $g: X \to Y$ and $h: Y \to Z$, the following diagram commutes

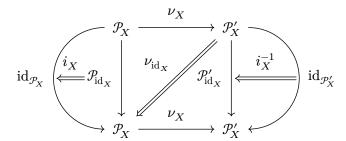
$$\begin{array}{c|c} \mathcal{P}_{h \circ g \circ f} & \xrightarrow{} & \mathcal{P}_{f} \circ \mathcal{P}_{h \circ g} \\ \hline \\ c_{g \circ f, h} & & \mathcal{P}_{f} \circ c_{g, h} \\ & & & \\ \mathcal{P}_{g \circ f} \circ \mathcal{P}_{h} & \xrightarrow{} & \mathcal{P}_{f} \circ \mathcal{P}_{g} \circ \mathcal{P}_{h} \end{array}$$

Given two pseudofunctors \mathcal{P} and \mathcal{P}' , a morphism $\nu: \mathcal{P} \to \mathcal{P}'$ is a pseudonatural transformation between \mathcal{P} and \mathcal{P}' , that is, for each point $X: \mathcal{B}$, a functor $\nu_X: \mathcal{P}_X \to \mathcal{P}_X'$ and, for each morphism $f: X \to Y$ in \mathcal{B} , a natural isomorphism



satisfying the following coherence conditions:

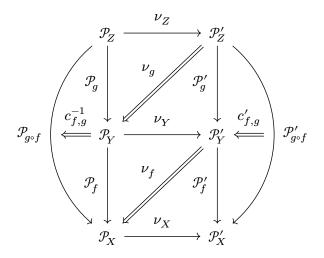
• for $X : \mathcal{B}$, the following pasting is ν_X



that is,

$$(\nu_X \circ i_X) \circ \nu_{\mathrm{id}_X} \circ (i_X'^{-1} \circ \nu_X) = \mathrm{id}_{\nu_X}$$

• if $f: X \to Y$ and $g: Y \to Z$ are two morphisms in \mathcal{B} , $\nu_{g \circ f}$ is obtained by pasting the squares (plus pseudo-composition)



that is,

$$\nu_{g \circ f} = \left(\nu_X \circ c_{f,g}^{-1}\right) \circ \left(\nu_f \circ \mathcal{P}_g\right) \circ \left(\mathcal{P}_f' \circ \nu_g\right) \circ \left(c_{f,g}' \circ \nu_Z\right)$$

1.2. Main theorem

We aim at proving the

Theorem 1.2.1 (Main theorem): For a given base category \mathcal{B} , we have

$$\mathbf{Fib}_{\mathcal{B}} \cong \mathbf{Pfct}_{\mathcal{B}}$$

In order to do so, we will build in Section 2 half of the equivalence, namely,

$$\Phi:\mathbf{Fib}_{\mathcal{B}}\to\mathbf{Pfct}_{\mathcal{B}}$$

and, in Section 3, the other half of the equivalence, namely,

$$\Psi:\mathbf{Pfct}_{\mathcal{B}}\to\mathbf{Fib}_{\mathcal{B}}$$

In Section 4, we will show that the two form the two halves of an equivalence, finishing the proof.

2. Fiber functor

Let's build

$$\Phi:\mathbf{Fib}_{\mathcal{B}}\to\mathbf{Pfct}_{\mathcal{B}}$$

2.1. Action of Φ on objects

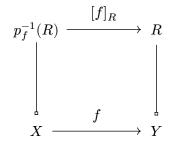
Assume we have a fibration p.

2.1.1. Definition of the fibre pseudo-functor

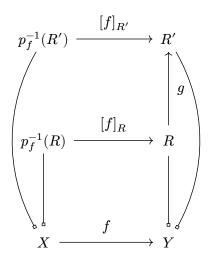
Let us build $p^{-1}: \mathcal{B}^{op} \to \mathbf{Cat}$ a pseudo-functor. For $X: \mathcal{B}$,

$$\begin{split} p_X^{-1} &= \{R: \mathcal{E} \mid R \sqsubset X\} \\ p_X^{-1}(S,R) &= \{\alpha: S \rightarrow R \mid p(\alpha) = \mathrm{id}_X\} \end{split}$$

Let $X, Y : \mathcal{B}$ and $f : X \to Y$. Let's define $p_f^{-1} : p_Y^{-1} \to p_X^{-1}$ by noticing that, for each $R : p_Y^{-1}$, by the fibration condition on p, there exists a cartesian morphism $[f]_R$



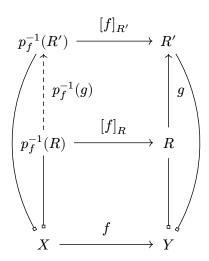
Furthermore, for $R, R': p_Y^{-1}$ and $g: R \to R'$, we have the following diagram



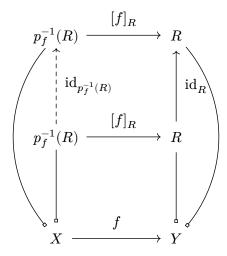
By cartesianity of $\iota_{R'}$, there exists a unique $p_f^{-1}(g):p_f^{-1}(R)\to p_f^{-1}(R')$ st

$$\begin{split} p\Big(p_f^{-1}(g)\Big) &= \mathrm{id}_X \\ [f]_{R'} \circ p_f^{-1}(g) &= g \circ [f]_R \end{split}$$

ie. the following diagram commutes



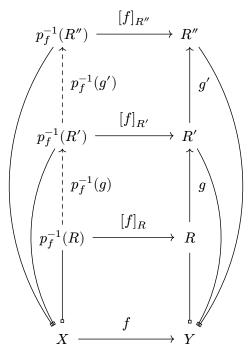
Let us indeed check that this defines a functor. For any $R: p_Y^{-1}$, note that



 $\operatorname{id}_{p_f^{-1}(R)}$ satisfies the universal property of $p_f^{-1}(\operatorname{id}_R),$ so we have

$$p_f^{-1}(\mathrm{id}_R)=\mathrm{id}_{p_f^{-1}(R)}$$

Let now $R,R',R'':p_Y^{-1},\,g:R\to R'$ and $g':R'\to R''.$



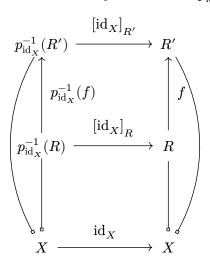
Note that $p_f^{-1}(g') \circ p_f^{-1}(g)$ satisfies the universal property of $p_f^{-1}(g' \circ g)$, so we have

$$p_f^{-1}(g'\circ g) = p_f^{-1}(g')\circ p_f^{-1}(g)$$

Let us now show that p^{-1} indeed defines a pseudo-functor.

2.1.2. Pseudo identity law

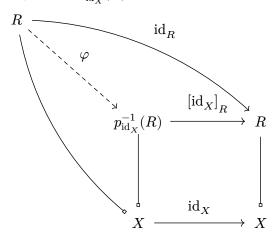
For $X:\mathcal{B}^{\mathsf{op}}$, let us first exhibit a natural isomorphism $p_{\mathrm{id}_X}^{-1} \overset{\sim}{\Rightarrow} \mathrm{id}_X$. For $R:p_X^{-1}$, we have $\left[\mathrm{id}_X\right]_R:p_{\mathrm{id}_X}^{-1}(R) \to \mathrm{id}_X(R)$. This defines a natural transformation. Indeed, for $R,R':p_X^{-1}$ and $f:R\to R'$, the following diagram commutes by definition of $p_{\mathrm{id}_X}^{-1}(f)$:



So in particular the upper square commutes

hence $[\mathrm{id}_X]$ is natural. Let's show that each component is an isomorphism.

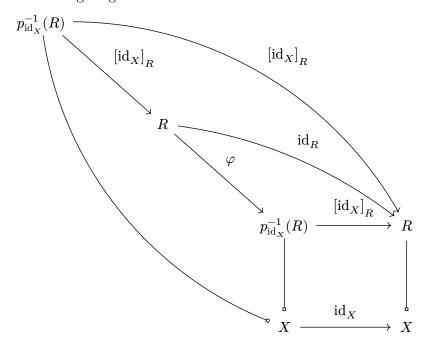
There is a unique morphism $\varphi:R\to p_{\mathrm{id}_X}^{-1}(R)$ making the following diagram commute



So

$$\left[\operatorname{id}_X\right]_R\circ\varphi=\operatorname{id}_R$$

Furthermore, the following diagram commutes



Meaning that $\varphi \circ [\mathrm{id}_X]_R$ satisfies the universal property of $[\mathrm{id}_X]_R$ with respect to $[\mathrm{id}_X]_R$. But so does the identity, so, by unicity, we have

$$\varphi\circ \left[\operatorname{id}_X\right]_R=\operatorname{id}_{p_{\operatorname{id}_X}^{-1}(R)}$$

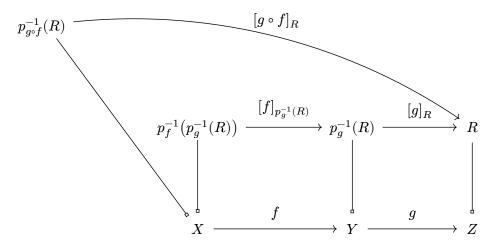
Hence $\left[\operatorname{id}_X\right]_R$ is an iso.

2.1.3. Pseudo-composition law

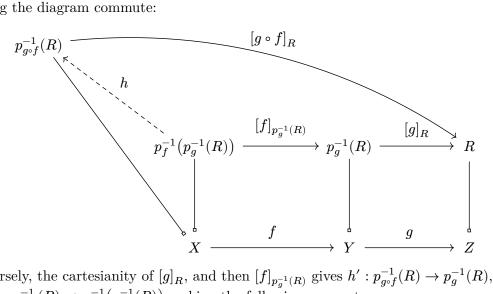
Lemma 2.1.3.1 (Pseudo-composition law): Let $X, Y, Z : \mathcal{B}$, and $f : X \to Y$, $g : Y \to Z$. There is a natural isomorphism

$$[f,g]:p_{g\circ f}^{-1}\Longrightarrow p_f^{-1}\circ p_g^{-1}$$

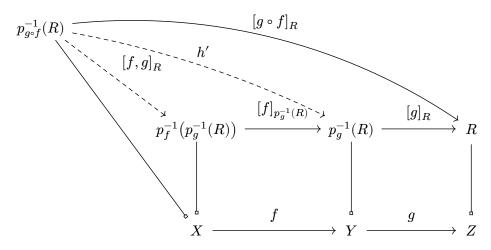
Proof: Let $R: p_Z^{-1}$, and consider the following diagram



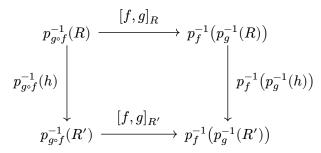
The fact that $[g\circ f]_R$ is cartesian gives a unique morphism $h:p_f^{-1}\bigl(p_g^{-1}(R)\bigr)\to p_{g\circ f}^{-1}(R)$ making the diagram commute:



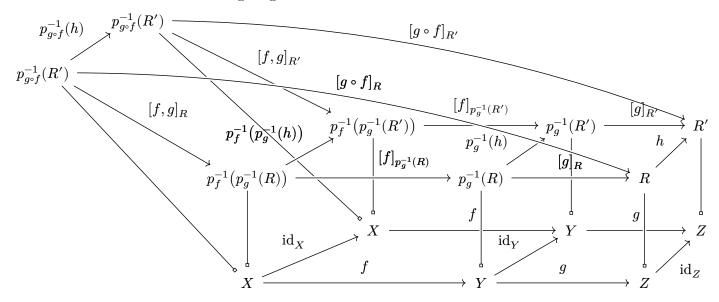
Conversely, the cartesianity of $[g]_R$, and then $[f]_{p_g^{-1}(R)}$ gives $h': p_{g\circ f}^{-1}(R) \to p_g^{-1}(R)$, then $[f,g]_R: p_{g\circ f}^{-1}(R) \to p_f^{-1}\left(p_g^{-1}(R)\right)$ making the following commute



In particular, $[f,g]_R$ and h must be each other's inverse. We have to show that this construction is natural. Let $R,R':p_Z^{-1}$ and $h:R\to R'$. We want to show that the following diagram commutes



Note that in the following diagram



 $p_{g\circ f}^{-1}(h)$ is the unique solution to the universal problem of living in the fiber above X and making the top-most square commute. Hence, to prove that

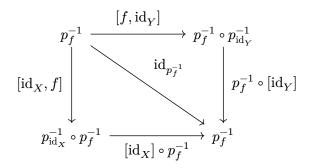
$$[f,g]_{R'}\circ p_{g\circ f}^{-1}(h)=p_f^{-1}\big(p_g^{-1}(h)\big)\circ [f,g]_R$$

it suffices to show that $[f,g]_{R'}^{-1} \circ p_f^{-1} (p_g^{-1}(h)) \circ [f,g]_R$ also satisfies this universal property. Each of these three morphisms lives in the fiber above X, so so does their composition. Furthermore,

$$\begin{split} [g\circ f]_{R'}\circ [f,g]_{R'}^{-1}\circ p_f^{-1}\left(p_g^{-1}(h)\right)\circ [f,g]_R &= [g]_{R'}\circ [f]_{p_g^{-1}(R')}\circ p_f^{-1}\left(p_g^{-1}(h)\right)\circ [f,g]_R & \text{by definition of } [f,g]_{R'}\\ &= [g]_{R'}\circ p_g^{-1}(h)\circ [f]_{p_g^{-1}(R)}\circ [f,g]_R & \text{by definition of } p_f^{-1}\left(p_g^{-1}(h)\right)\\ &= h\circ [g]_R\circ [f]_{p_g^{-1}(R)}\circ [f,g]_R & \text{by definition of } p_g^{-1}(h)\\ &= h\circ [g\circ f]_R & \text{by definition of } [f,g]_R \end{split}$$

2.1.4. Identity/composition coherence

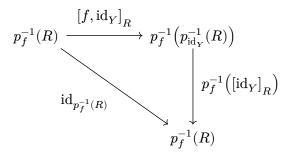
Let $X, Y : \mathcal{B}$ and $f : X \to Y$ We have to check that the following diagram commutes



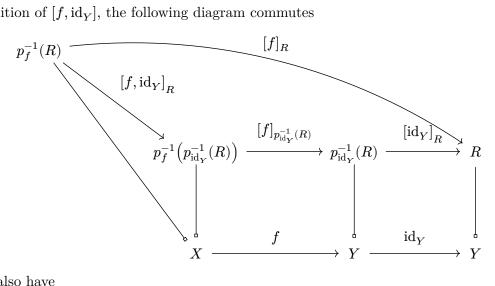
Let's show that each triangle commutes independently.

2.1.4.1. Upper triangle

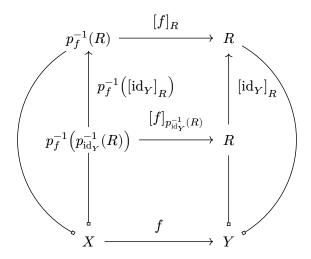
Let $R: p_Y^{-1}$. We have to check the commutation of the following diagram



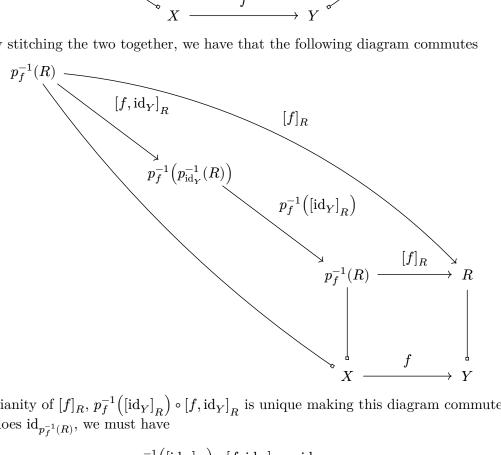
By definition of $[f, id_Y]$, the following diagram commutes



and we also have



Hence, by stitching the two together, we have that the following diagram commutes

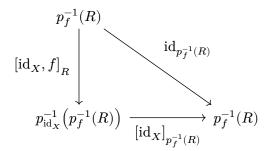


By cartesianity of $[f]_R$, $p_f^{-1}([\mathrm{id}_Y]_R) \circ [f,\mathrm{id}_Y]_R$ is unique making this diagram commute; but since so does $\mathrm{id}_{p_f^{-1}(R)}$, we must have

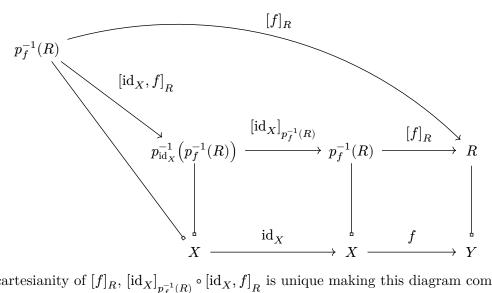
$$p_f^{-1} \left(\left[\operatorname{id}_Y \right]_R \right) \circ \left[f, \operatorname{id}_Y \right]_R = \operatorname{id}_{p_f^{-1}(R)}$$

2.1.4.2. Lower triangle

Let $R:p_Y^{-1}$. We have to show the commutation of the following diagram



By definition of $[id_X, f]$, the following diagram commutes



but, by cartesianity of $[f]_R$, $[\mathrm{id}_X]_{p_f^{-1}(R)} \circ [\mathrm{id}_X, f]_R$ is unique making this diagram commute. Because $\mathrm{id}_{p_f^{-1}(R)}$ also makes it commute, we must have

$$\left[\operatorname{id}_X\right]_{p_f^{-1}(R)}\circ \left[\operatorname{id}_X,f\right]_R=\operatorname{id}_{p_f^{-1}(R)}$$

2.1.5. Composition/composition coherence

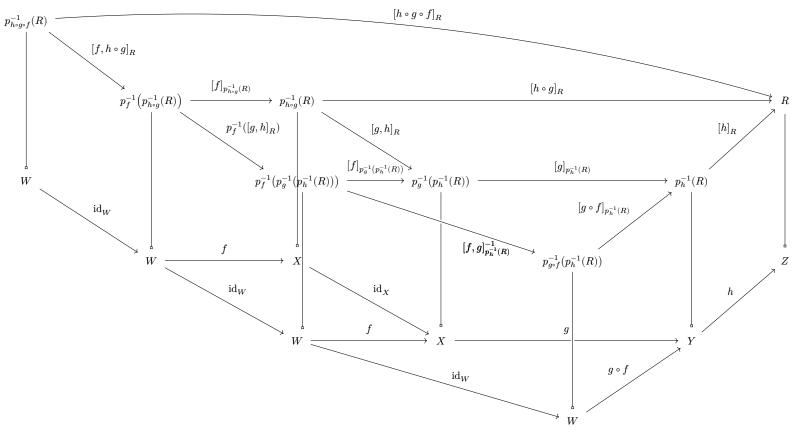
Let $W, X, Y, Z : \mathcal{B}$ and

$$W \xrightarrow{f} X \xrightarrow{g} Y \xrightarrow{h} Z$$

Let $R: p_Z^{-1}$, we want to show that the following diagram commutes

It suffices to show that $[f,g]_{p_h^{-1}(R)}^{-1} \circ p_f^{-1}([g,h]_R) \circ [f,h\circ g]_R$ satisfies the universaly property of $[g\circ f,h]_R$, that is, the following diagram commutes

In the following diagram, each inner diagram commutes, hence the outermost diagram commutes



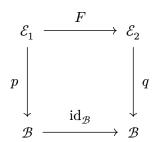
which is exactly what we wanted.

We can therefore define

$$\Phi(p) = p^{-1}$$

2.2. Action of Φ on morphisms

Let $p:\mathcal{E}_1 o\mathcal{B}$ and $q:\mathcal{E}_2 o\mathcal{B}$ be two fibrations, and F:p o q be a morphism



We want to define $\nu^F:p^{-1}\to q^{-1}.$ Let $X:\mathcal{B},$

$$\begin{split} \nu_X^F : p^{-1}(X) &\longrightarrow q^{-1}(X) \\ S &\longmapsto F(S) \\ f &\longmapsto F(f) \end{split}$$

Which is well defined because, if p(S) = X, then

$$q(F(S)) = p(S) = X$$

and if $f: S \to R$ is in the fiber above X, then

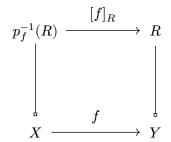
$$q(F(f)) = p(f) = id_X$$

so F(f) also lives in the fiber above X. ν_X^F is clearly functorial, because F is.

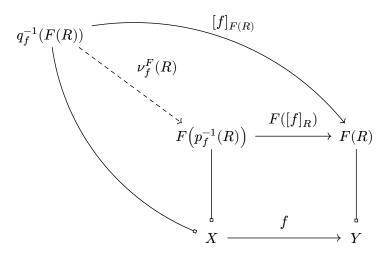
Now, let $f: X \to Y$ in \mathcal{B}

$$\nu_f^F(R):q_f^{-1}(F(R))\longrightarrow F\Big(p_f^{-1}(R)\Big)$$

is defined by noting that we have the following commuting diagram



and so, by cartesianity of $F([f]_R)$, which stems from that of $[f]_R$ because F preserves cartesianity,

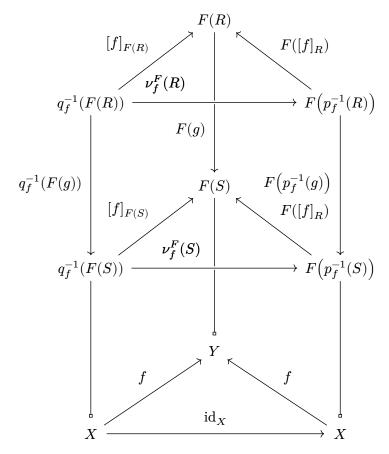


2.2.1. ν_f^F is an isomorphism

2.2.1.1. Naturality

Lemma 2.2.1.1.1: ν_f^F is a natural transformation.

Proof: Let $g: R \to S$ be a morphism in p_Y^{-1} .



We have to show that the upper front square commutes. This stems from the fact that $q_f^{-1}(F(g))$ has the universal property of living in the fiber over X, and making the leftmost square commute, so we just need to check that the same is true for

$$\nu_f^F(S)^{-1}\circ F\Bigl(p_f^{-1}(g)\Bigr)\circ \nu_f^F(R)$$

which is true because the two triangles and the right-most square commute in the above diagram. \Box

2.2.1.2. Coherences

Lemma 2.2.1.2.1: ν^F is a morphism.

Proof: We have shown that, for any f, ν_f^F is a natural transformation. We just have to check that ν^F satisfies the coherence conditions.

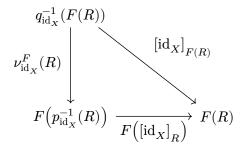
• Let $X:\mathcal{B}.$ Let $R:p_X^{-1}.$ We have to check that

$$\mathrm{id}_{\nu_X(R)} = \left(\nu_X^F \left(\left[\mathrm{id}_X\right]_R\right)\right) \circ \nu_{\mathrm{id}_X}^F(R) \circ \left[\mathrm{id}_X\right]_{\nu_X(R)}^{-1}$$

that is,

$$\left[\operatorname{id}_X\right]_{F(R)} = F\!\left(\left[\operatorname{id}_X\right]_R\right) \circ \nu^F_{\operatorname{id}_X}(R)$$

which is, in diagrammatic form,



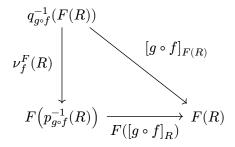
the commutation of this diagram is exactly the definition of $\nu^F_{\mathrm{id}_X}(R)$.

• Let $X,Y,Z:\mathcal{B}$ be three objects, $f:X\to Y$ and $g:Y\to Z$ be two morphisms in \mathcal{B} . Let $R: p_Z^{-1}$. We have to check that

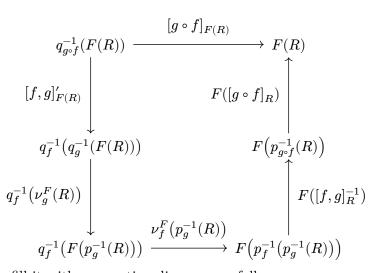
$$\nu^F_{g \circ f}(R) = \nu^F_X \big([f,g]_R^{-1} \big) \circ \nu^F_f \big(p_g^{-1}(R) \big) \circ q_f^{-1} \big(\nu^F_g(R) \big) \circ [f,g]_{\nu^F_Z(R)}'$$

that is, that the following diagram commutes

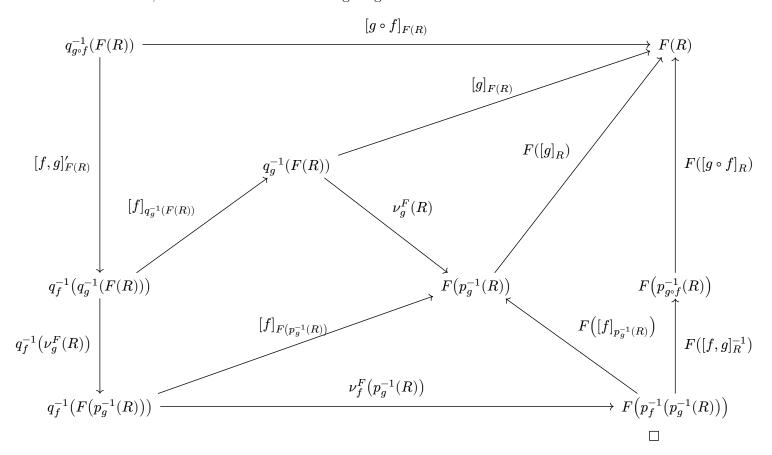
 $u_{g \circ f}^F(R)$ is defined as the unique map in the fiber above X that makes the following diagram commute



Hence, we just need to show that the following diagram commutes



Indeed, we can fill it with commuting diagrams as follows



2.2.1.3. Iso

Lemma 2.2.1.3.1: $\nu_f^F(R)$ is an isomorphism.

Proof: This stems from the fact that $[f]_{F(R)}$ is cartesian.

We therefore define

$$\Phi(F) = \nu^F$$

3. Grothendieck construction

In this section, we will define a functor $\Psi : \mathbf{Pfct}_{\mathcal{B}} \to \mathbf{Fib}_{\mathcal{B}}$.

3.1. Action of Ψ on objects

Let $\mathcal{P}: \mathcal{B}^{\mathsf{op}} \to \mathbf{Cat}$ be a pseudo-functor. Let's build a fibration over B out of it.

Definition 3.1.1 (Total category): The total category $\int \mathcal{P}$ has

- objects: pairs (X, x) with $X : \mathcal{B}^{op}$ and $x : \mathcal{P}_X$;
- morphisms between two objects (A,a) and (B,b): pairs (f_1,f_2) with $f_1:A\to B$ in $\mathcal B$ and $f_2:a\to \mathcal P_{f_1}(b)$.
- identities for $(X,x):\int \mathcal{P}\colon \left(\mathrm{id}_{(X,x)}\right)_0=\mathrm{id}_X$ and

$$\left(\mathrm{id}_{(X,x)}\right)_1:x\longrightarrow\mathcal{P}_{\mathrm{id}_X}(x)$$

$$\left(\mathrm{id}_{(X,x)}\right)_1 = i_X^{-1}(x)$$

- composition, given $(A,a), (B,b), (C,c): \int \mathcal{P}, (f_1,f_2): (A,a) \to (B,b)$ and $(g_1,g_2): (B,b) \to (C,c): (h_1,h_2) = (g_1,g_2)\circ (f_1,f_2)$ by
 - $h_1:A\to C=g_1\circ f_1$
 - $h_2: a \to \mathcal{P}_{g_1 \circ f_1}(c)$ by

$$a \xrightarrow{f_2} \mathcal{P}_{f_1}(b) \xrightarrow{\mathcal{P}_{f_1}(g_2)} \mathcal{P}_{f_1}\left(\mathcal{P}_{g_1}(c)\right) \xrightarrow{c_{f_1,g_1}^{-1}(c)} \mathcal{P}_{g_1\circ f_1}(c)$$

Lemma 3.1.1: Let f be an isomorphism in $\int \mathcal{P}$. f_1 and f_2 are invertible.

Proof: Let $(f_1, f_2): (A, a) \to (B, b)$ a morphism in $\int \mathcal{P}$, and $(g_1, g_2): (B, b) \to (A, a)$ such that

$$(f_1, f_2) \circ (g_1, g_2) = id_{B,b}$$

 $(g_1, g_2) \circ (f_1, f_2) = id_{A,a}$

We have that $f_1 \circ g_1 = \mathrm{id}_B$ and $g_1 \circ f_1 = \mathrm{id}_A$, so f_1 is invertible and $f_1^{-1} = g_1$.

Furthermore, the following diagram commute

$$\begin{array}{c|c} a & \xrightarrow{\qquad i_A(a)^{-1}} & \mathcal{P}_{\mathrm{id}_A}(a) \\ \downarrow & & \uparrow \\ \mathcal{P}_{f_1}(b) & \xrightarrow{\qquad \mathcal{P}_{f_1}(g_2)} & \mathcal{P}_{f_1}\left(\mathcal{P}_{f_1^{-1}}(a)\right) \end{array}$$

So we have a candidate for the inverse of f_2 , namely,

$$\hat{f}_2 := i_A(a) \circ c_{f_1, f_1^{-1}}^{-1}(a) \circ \mathcal{P}_{f_1}(g_2)$$

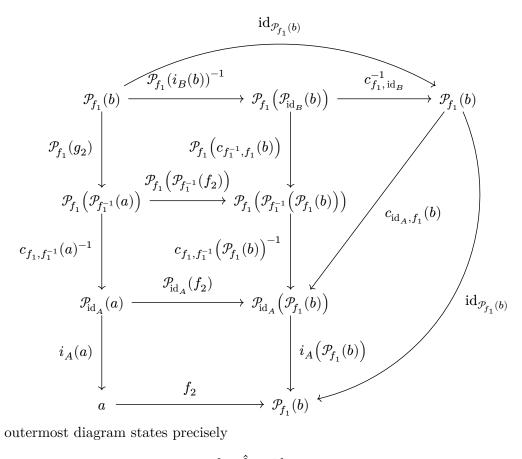
because the diagram above states that $\hat{f}_2 \circ f_2 = \mathrm{id}_a$. Furthermore, the following diagram commutes

$$\begin{array}{c|c} b & \xrightarrow{i_B(b)^{-1}} & \mathcal{P}_{\mathrm{id}_B}(b) \\ & \downarrow & & \uparrow \\ g_2 & & \uparrow \\ & \mathcal{P}_{f_1^{-1}}(f_2) & & \uparrow \\ & \mathcal{P}_{f_1^{-1}}(a) & \xrightarrow{\mathcal{P}_{f_1^{-1}}} \left(\mathcal{P}_{f_1}(b)\right) \end{array}$$

Hence so does its image by \mathcal{P}_{f_1}

$$\begin{array}{c|c} \mathcal{P}_{\!f_1}(b) & \xrightarrow{\qquad \mathcal{P}_{\!f_1}\!\left(i_B(b)^{-1}\right)} & \mathcal{P}_{\!f_1}\!\left(\mathcal{P}_{\!\operatorname{id}_B}(b)\right) \\ \\ \mathcal{P}_{\!f_1}\!\left(g_2\right) & & & & \\ & & & & \\ & & & & \\ \mathcal{P}_{\!f_1}\!\left(\mathcal{P}_{\!f_1^{-1}}(f_2)\right) & & & \\ & & & & \\ \mathcal{P}_{\!f_1}\!\left(\mathcal{P}_{\!f_1^{-1}}(a)\right) & \xrightarrow{\qquad \mathcal{P}_{\!f_1}\!\left(\mathcal{P}_{\!f_1^{-1}}\!\left(\mathcal{P}_{\!f_1}(b)\right)\right)} \\ \end{array}$$

Thus the following diagram commutes (the other inner squares/triangles are coherence conditions)



the outermost diagram states precisely

$$f_2 \circ \hat{f}_2 = \mathrm{id}_{\mathcal{P}_{f_1}(b)}$$

Definition 3.1.2 (Forgetful fibration): We can now define the forgetful fibration

$$\pi(\mathcal{P}): \int \mathcal{P} \longrightarrow \mathcal{B}$$
$$(A, a) \longmapsto A$$
$$(f_1, f_2) \longmapsto f_1$$

which is clearly functorial.

Lemma 3.1.2: The forgetful fibration is a fibration.

Proof: Let $A, B : \mathcal{B}, f : A \to B$ and $b : \mathcal{P}_B$, ie we have the following diagram:

$$\begin{array}{ccc}
(B,b) \\
\downarrow \\
A & \longrightarrow B
\end{array}$$

We can lift f as

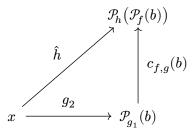
Hence, we just have to show that $\left(f,\mathrm{id}_{\mathcal{P}_{\!f}(b)}\right)$ is cartesian. Let $X:\mathcal{B},\,x:X,\,(g_1,g_2):(X,x)\to(B,b)$ and $h:X\to A$ such that $g_1=f\circ h$:

$$\begin{array}{ccc}
X & & & & \\
h \downarrow & & & & \\
A & & & & B
\end{array}$$

We have to show there is a unique $\hat{h}: x \to \mathcal{P}_h(\mathcal{P}_f(b))$ with

$$\begin{array}{c|c} x & \xrightarrow{g_2} & \mathcal{P}_{g_1}(b) \\ & \downarrow & & \uparrow \\ & \downarrow & & \uparrow \\ \mathcal{P}_h\left(\operatorname{id}_{\mathcal{P}_f(b)}\right) & \xrightarrow{\mathcal{P}_f\left(\mathcal{P}_h(b)\right)} \\ \mathcal{P}_h\left(\mathcal{P}_f(b)\right) & \xrightarrow{} & \mathcal{P}_f\left(\mathcal{P}_h(b)\right) \end{array}$$

which is equivalent to the following diagram commuting

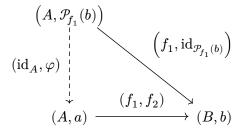


but it is obvious that there is exactly one \hat{h} that makes this commute, namely,

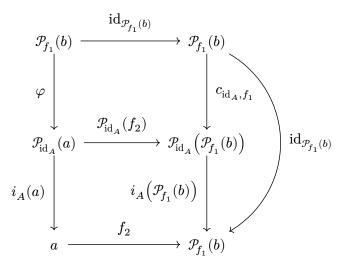
$$\hat{h} = c_{f,g}(b) \circ g_2$$

Lemma 3.1.3: Let (f_1, f_2) be a cartesian morphism in $\int \mathcal{P}$. f_2 is an isomorphism.

Proof: Let $(f_1, f_2): (A, a) \to (B, b)$ be a cartesian morphism. In the previous proof, we have established that $(f_1, \mathrm{id}_{\mathcal{P}_{f_1}(b)})$ is cartesian. Hence, there exists a unique isomorphism (id_A, φ) making the following diagram commute



hence the top square of this diagram commutes



the lower square commutes by naturality of i_A , and the triangle commutes by a coherence condition. Therefore,

$$f_2\circ i_A(a)\circ\varphi=\mathrm{id}_{\mathcal{P}_{\!f_1}(b)}$$

By Lemma 3.1.1, (id_A, φ) is an isomorphism, so φ is too and hence

$$f_2 = (i_A(a) \circ \varphi)^{-1}$$

so f_2 is an isomorphism.

Lemma 3.1.4: Let (f_1, f_2) be a morphism in $\int \mathcal{P}$, with f_2 an isomorphism. (f_1, f_2) is cartesian.

Proof: Let $(f_1,f_2):(X,x)\to (Y,y)$, with $f_2:x\to \mathcal{P}_{f_1}(y)$ an isomorphism, $(g_1,g_2):(Z,z)\to (Y,y)$ and $h:Z\to X$ such that $g_1=f_1\circ h$. We want to find a unique $\hat h:z\to \mathcal{P}_h(x)$ such that $(g_1,g_2)=(f_1,f_2)\circ \left(h,\hat h\right)$, which is equivalent to the commutation of the following diagram

Since f_2 is an iso, it is clear that there is a unique \hat{h} making the above diagram commute.

We thus define Ψ on objects by

$$\Psi(\mathcal{P}) = \left(\int \mathcal{P}, \pi(\mathcal{P}) \right)$$

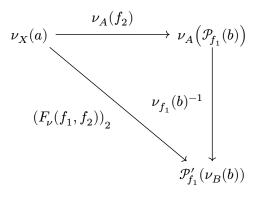
3.2. Action of Ψ on morphisms

Let $\mathcal{P}, \mathcal{P}'$ be two pseudo-functors, and $\nu : \mathcal{P} \to \mathcal{P}'$ a morphism in $\mathbf{Pfct}_{\mathcal{B}}$.

Definition 3.2.1: Let

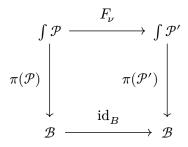
$$\begin{split} F_{\nu}: & \int \mathcal{P} \longrightarrow \int \mathcal{P}' \\ & (X,x) \longmapsto (X,\nu_X(x)) \\ & (f_1,f_2) \longmapsto \left(f_1,\nu_{f_1}(b)^{-1} \circ \nu_X(f_2)\right) \end{split}$$

That is, for $(f_1, f_2): (A, a) \to (B, b)$, we have



Lemma 3.2.1: F_{ν} is a fibration morphism

Proof: We have to show that it makes the following diagram commute



and that F_{ν} preserves the cartisian morphisms.

- Let's show the two functors agree:
 - on objects: let $(X, x) : \int \mathcal{P}$,

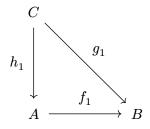
$$\begin{split} \pi(\mathcal{P}')(F_{\nu}(X,x)) &= \pi(\mathcal{P}')(X,\nu_X(x)) \\ &= X \\ &= \pi(\mathcal{P})(X,x) \end{split}$$

• on morphisms: let $(f_1, f_2) : (A, a) \rightarrow (B, b)$,

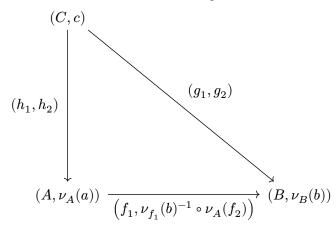
$$\begin{split} \pi(\mathcal{P}')(F_{\nu}(f_1,f_2)) &= \pi(\mathcal{P}') \Big(\Big(f_1,\nu_{f_1}(b)^{-1} \circ \nu_A(f_2) \Big) \Big) \\ &= f_1 \\ &= \pi(\mathcal{P})(f_1,f_2) \end{split}$$

Hence the diagram commutes.

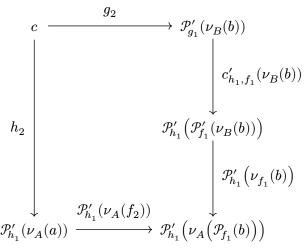
• Let $(f_1, f_2): (A, a) \to (B, b)$ be a cartesian morphism in $\int \mathcal{P}$. Let $(g_1, g_2): (C, c) \to (B, \nu_B(b))$ be a morphism in $\int \mathcal{P}'$ and $h_1: C \to B$ in \mathcal{B} such that the following diagram commutes



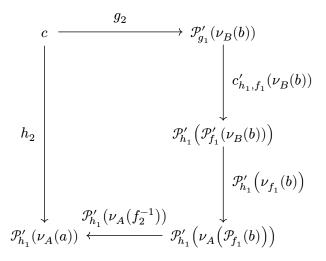
Let's show that there exists a unique $h_2:c o \mathcal{P}'_{h_1}(a)$ such that



that is



By Lemma 3.1.3, f_2 is an isomorphism, hence the commutation of the latter diagram is equivalent to that of the following, for which there clearly exists a unique h_2



4. The equivalence

4.1. $\Phi \circ \Psi$

Let $\mathcal{P}: \mathcal{B}^{\mathsf{op}} \to \mathbf{Cat}$ be a pseudo-functor.

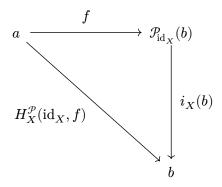
Definition 4.1.1: Consider

$$H^{\mathcal{P}}:\pi(\mathcal{P})^{-1}\longrightarrow\mathcal{P}$$

defined by, for $X : \mathcal{B}$,

$$\begin{split} H_X^{\mathcal{P}}: \ \pi(\mathcal{P})_X^{-1} &\longrightarrow \mathcal{P}_X \\ (X,x) &\longmapsto x \\ (\mathrm{id}_X,f) &\longmapsto i_X(b) \circ f \end{split}$$

Let $(\mathrm{id}_X,f):(X,a)\to (X,b)$ in $\pi(\mathcal{P})_X^{-1},$ that is, $f:a\to \mathcal{P}_{\mathrm{id}_X}(b).$ We have



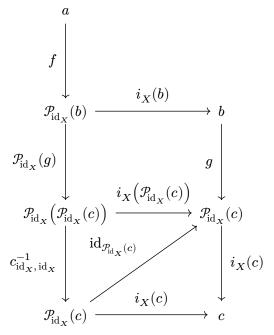
Lemma 4.1.1: For $X : \mathcal{B}, H_X^{\mathcal{P}}$ is a functor.

Proof: Let $(X,x):\pi(\mathcal{P})_X^{-1}$. $\mathrm{id}_{X,x}=\left(\mathrm{id}_X,i_X^{-1}(x)\right)$, and so

$$\begin{split} H_X^{\mathcal{P}} \big(\mathrm{id}_{X,x} \big) &= i_X(x) \circ i_X^{-1}(x) \\ &= \mathrm{id}_{\pi} \end{split}$$

Furthermore, for $(X,a),(X,b),(X,c):\pi(\mathcal{P})_X^{-1}$ and $(\mathrm{id}_X,f):(X,a)\to (X,b)$ and $(\mathrm{id}_X,f):(X,b)\to (X,c),$

$$\begin{split} H_X^{\mathcal{P}}((\mathrm{id}_X,g)\circ(\mathrm{id}_X,f)) &= H_X^{\mathcal{P}}\big(\mathrm{id}_X,c_{\mathrm{id}_X,\,\mathrm{id}_X}^{-1}(c)\circ\mathcal{P}_{\mathrm{id}_X}(g)\circ f\big) \\ &= i_X(c)\circ c_{\mathrm{id}_X,\,\mathrm{id}_X}^{-1}(c)\circ\mathcal{P}_{\mathrm{id}_X}(g)\circ f \end{split}$$

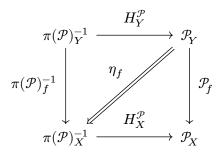


the lower right triangle commutes trivially, the triangle above commutes by a composition/identity coherence, and the square above by naturality of i_X . The outer diagram shows that

$$i_X(c) \circ c_{\mathrm{id}_X,\,\mathrm{id}_X}^{-1}(c) \circ \mathcal{P}_{\mathrm{id}_X}(g) \circ f = \underbrace{(i_X(c) \circ g)}_{=H_X^{\mathcal{P}}(\mathrm{id}_X,g)} \circ \underbrace{(i_X(b) \circ f)}_{=H_X^{\mathcal{P}}(\mathrm{id}_X,f)}$$

Lemma 4.1.2: $H^{\mathcal{P}}$ is a morphism in $\mathbf{Pfct}_{\mathcal{B}}$.

Proof: Let $f: X \to Y$ in \mathcal{B} , let's show that there is a natural isomorphism



Let $(Y,y):\pi(\mathcal{P})_Y^{-1},$ that is, $y:\mathcal{P}_Y.$ We have

$$\pi(\mathcal{P})_f^{-1}(Y,y) \xrightarrow{\qquad \qquad [f]_{Y,y} \qquad \qquad (Y,y)$$

We can write $[f]_{Y,y} = (f, \eta_f(y))$ with $\eta_f(y) : H_X^{\mathcal{P}} (\pi(\mathcal{P})_f^{-1}(Y, y)) \to \mathcal{P}_f(y)$.

Let's prove that η_f is natural, and that it is an isomorphism.

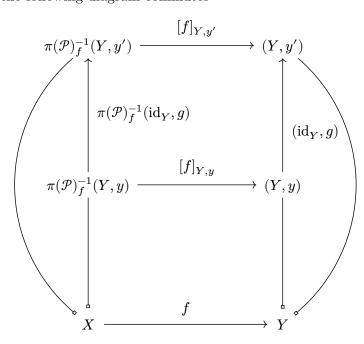
• let $y, y' : \mathcal{P}_Y$ and $g : y \to y'$. We want to show the following diagram commutes

$$H_X^{\mathcal{P}}\Big(\pi(\mathcal{P})_f^{-1}(Y,y)\Big) \xrightarrow{\eta_f(y)} \mathcal{P}_f(y)$$

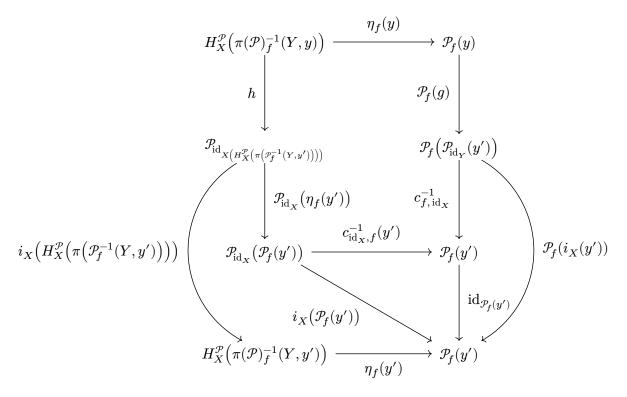
$$H_X^{\mathcal{P}}\Big(\pi(\mathcal{P})_f^{-1}(\mathrm{id}_Y,g)\Big) \downarrow \qquad \qquad \downarrow \mathcal{P}_f\Big(H_Y^{\mathcal{P}}(\mathrm{id}_Y,g)\Big)$$

$$H_X^{\mathcal{P}}\Big(\pi(\mathcal{P})_f^{-1}(Y,y')\Big) \xrightarrow{\eta_f(y')} \mathcal{P}_f(y')$$

We have that the following diagram commutes



We can write $\pi(\mathcal{P})_f^{-1}(\mathrm{id}_Y, g) = (\mathrm{id}_Y, h)$, and so the commutation of the square implies the following commutation on the second component of the morphisms



the two triangles commute by a composition/identity coherence, while the left square is the naturality of i_X . Note that the outermost diagram is exactly the one we were looking for, showing that η_f is natural.

• $(f, \eta_f(y)) = [f]_{Y,y}$ is cartesian (by definition of $[-]_-$), hence, by Lemma 3.1.3, $\eta_f(y)$ is an isomorphism, showing that η_f is a natural isomorphism.

Lemma 4.1.3: $H^{\mathcal{P}}$ is an isomorphism.

Proof: To show that $H^{\mathcal{P}}$ is a pseudo-natural isomorphism, it is enough to show that each of its components is an isomorphism. Let $X : \mathcal{B}$. It is clear that both actions on objects and on morphisms of $H_X^{\mathcal{P}}$ are invertible.

Lemma 4.1.4: $H^{\mathcal{P}}$ is natural in \mathcal{P} .

Proof: Let $\mathcal{P}, \mathcal{P}' : \mathcal{B}^{\mathsf{op}} \to \mathbf{Cat}$ be two pseudo-functors, and $\nu : \mathcal{P} \to \mathcal{P}'$ be a pseudo-natural transformation. We have to show that

$$\pi(\mathcal{P})^{-1} \xrightarrow{H^{\mathcal{P}}} \mathcal{P}$$

$$\nu^{F_{\nu}} \downarrow \qquad \qquad \nu \downarrow$$

$$\pi(\mathcal{P}'^{-1}) \xrightarrow{H^{\mathcal{P}'}} \mathcal{P}'$$

Hence, we have to show that the diagram commutes at each point $X : \mathcal{B}$

$$\begin{array}{c|c} \pi(\mathcal{P})_X^{-1} & \xrightarrow{H_X^{\mathcal{P}}} & \mathcal{P}_X \\ \downarrow & & \downarrow \\ \nu_X^{F_{\nu}} & & \nu_X \\ \downarrow & & \downarrow \\ \pi(\mathcal{P}_X'^{-1}) & \xrightarrow{H_X^{\mathcal{P}'}} & \mathcal{P}_X' \end{array}$$

Let's check that the functor agree on each object and morphisms:

• let $x: \mathcal{P}_X$.

$$\begin{split} H^{\mathcal{P}_X'\left(\nu_X^{F_\nu}(X,x)\right)} &= H_X^{\mathcal{P}'}(F_\nu(X,x)) \\ &= H_X^{\mathcal{P}'}(X,\nu_X(x)) \\ &= \nu_X(x) \\ &= \nu_X\left(H_X^{\mathcal{P}}(X,x)\right) \end{split}$$

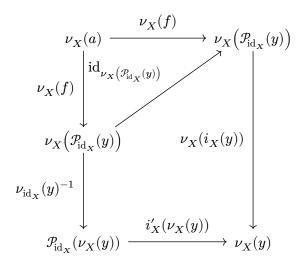
 $\bullet \ \ \text{let} \ x,y:\mathcal{P}_{\!\! X}, \, \text{and} \ f:x \to \mathcal{P}_{\!\! \operatorname{id}_X}(y).$

$$\begin{split} \nu_X \big(H_X^{\mathcal{P}}(\mathrm{id}_X, f) \big) &= \nu_X (i_X(y) \circ f) \\ &= \nu_X (i_X(y)) \circ \nu_X(f) \end{split}$$

and

$$\begin{split} H_X^{\mathcal{P}'} \Big(\nu_X^{F_\nu}(\mathrm{id}_X, f) \Big) &= H_X^{\mathcal{P}'} \big(F_\nu(\mathrm{id}_X, f) \big) \\ &= H_X^{\mathcal{P}'} \Big(\mathrm{id}_X, \nu_{\mathrm{id}_X}(y)^{-1} \circ \nu_X(f_2) \Big) \\ &= i_X(\nu_X(y)) \circ \nu_{\mathrm{id}_X}(y)^{-1} \circ \nu_X(f) \end{split}$$

We need to check that the following diagram commutes



note that the lower square commutes by a coherence condition on pasting diagrams, and the upper triangle trivially commutes.

Lemma 4.1.5:

$$\Phi \circ \Psi \cong \mathrm{id}_{\mathbf{Pfct}_{\mathcal{B}}}$$

Proof: We have exhibited a natural isomorphism

$$H:\Phi\circ\Psi\Longrightarrow\mathrm{id}_{\mathbf{Pfct}_{\mathcal{B}}}$$

4.2. $\Psi \circ \Phi$

Let $p: \mathcal{E} \to \mathcal{B}$ be a fibration.

$$\Psi\circ\Phi(p)=\pi(p^{-1}):\int p^{-1}\to\mathcal{B}$$

Definition 4.2.1: Consider

$$\begin{aligned} G_p: & \int p^{-1} \longrightarrow \mathcal{E} \\ & (X,R) \longmapsto R \\ & (f_1,f_2) \longmapsto [f_1]_R \circ f_2 \end{aligned}$$

Let $(f_1,f_2):(X,S) \to (Y,R),$ we have $f_1:X \to Y$ and $f_2:S \to p_{f_1}^{-1}(R)$

$$S \xrightarrow{f_2} p_{f_1}^{-1}(R) \xrightarrow{[f_1]_R} R$$

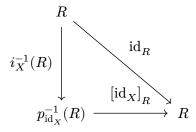
$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$X \xrightarrow{\operatorname{id}_X} X \xrightarrow{f_1} Y$$

Lemma 4.2.1: G_p is a functor.

Proof: Let $(X,R):\int p^{-1}$. $\mathrm{id}_{X,R}=\left(\mathrm{id}_X,i_X^{-1}(R)\right)$. We have to show that the following diagram commutes



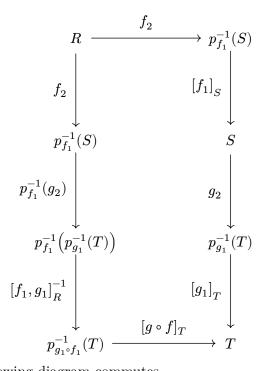
which commutes by definition of i_X .

Furthermore, let $(X,R), (Y,S), (Z,T): \int p^{-1}$, and

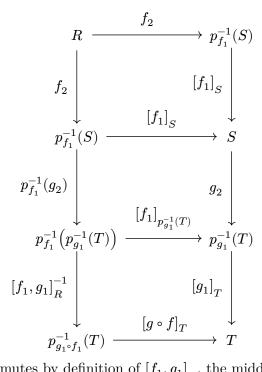
$$(f_1, f_2): (X, R) \longrightarrow (Y, S)$$

$$(g_1,g_2):(Y,S)\longrightarrow (Z,T)$$

Let us show that $G_p((g_1,g_2)\circ (f_1,f_2))=G_p(g_1,g_2)\circ G_p(f_1,f_2)$, that is, that the following diagram commutes



We indeed have the following diagram commutes

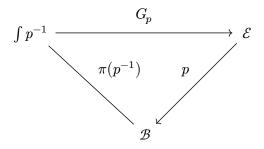


as the lower square commutes by definition of $\left[f_1,g_1\right]_R$, the middle one by definition of $p_{f_1}^{-1}(g_2)$, and the top one commutes trivially.

Lemma 4.2.2: G_p is a fibration morphism.

Proof: There are two things to check: the commutation with the fibrations, and the preservation of cartesian morphisms. Let's proceed in order.

1.



Let's check that the two functors agree on objects and morphisms.

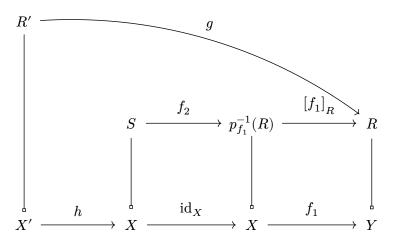
• let $(X, x) : \int p^{-1}$, ie X = p(x)

$$\begin{split} p\big(G_p(X,x)\big) &= p(x) \\ &= X \\ &= \pi(p^{-1})(X,x) \end{split}$$

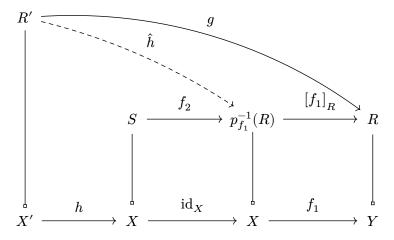
• let $(X,x),(Y,y):\int p^{-1},$ and $(f_1,f_2):(X,x)\to (Y,y).$ We have

$$\begin{split} p\big(G_p(f_1,f_2)\big) &= p\Big(\left[f_1\right]_y \circ f_2\Big) \\ &= p\Big(\left[f_1\right]_y\Big) \circ p(f_2) \\ &= f_1 \circ \mathrm{id}_X \\ &= f_1 \\ &= \pi(p^1)(f_1,f_2) \end{split}$$

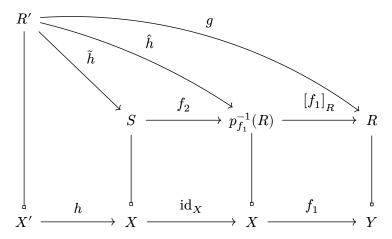
2. Let $(f_1, f_2): (X, S) \to (Y, R)$ be a cartesian morphism. By Lemma 3.1.3, f_2 is an isomorphism. Let $h: X' \to X$ and $g: R' \to R$ such that the following diagram commutes



By cartesianity of $[f_1]_R$, there exists a unique $\hat{h}: R' \to p_{f_1}^{-1}(R)$ such that the following diagram commutes



Hence, $f_2^{-1} \circ \hat{h}$ satisfies the wanted property. Furthermore, for any $\tilde{h}: R' \to S$ that makes the following diagram commute



note that $f_2 \circ \tilde{h}$ satisfies the same universal property as \hat{h} , hence $f_2 \circ \tilde{h} = \hat{h}$, and thus

$$\tilde{h}=f_2^{-1}\circ\hat{h}$$

which shows the unicity.

Lemma 4.2.3: G_p is an isomorphism.

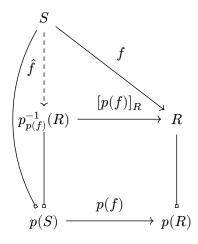
Proof: Let us exhibit an inverse morphism

$$K_p: \mathcal{E} \longrightarrow \int p^{-1}$$

• if $R: \mathcal{E}$, we define

$$K_p(R) = (p(R), R)$$

• if $S, R : \mathcal{E}$ and $f : S \longrightarrow R$ is a morphism in \mathcal{E} , by cartesianity of $[p(f)]_R$, there exists a unique $\hat{f} : S \to p_{p(f)}^{-1}(R)$ such that the following diagram commutes

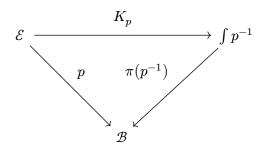


Let

$$K_p = \left(p(f), \hat{f} \right)$$

Let us show that K_p is the inverse of G_p (which will entail that it is a functor), and that it is a fibration morphism.

- 1. It is clear that K_p and G_p are each other's inverse on objects. Let (f_1, f_2) be a morphism in $\int p^{-1}$. We have that $p([f_1]_R \circ f_2) = p([f_1]_R) \circ p(f_2) = f_1 \circ \mathrm{id} = f_1$. Furthermore, f_2 is precisely the cartesian lifting of the identity by $[f_1]_R$, so we have $K_p(G_p(f_1, f_2)) = (f_1, f_2)$. Conversely, let $f: S \to R$ be a morphism in \mathcal{E} . By definition of \hat{f} , we have $f = [p(f)] \circ \hat{f}$, so $G_p(K_p(f)) = f$.
- 2. We have to check that the following diagram commutes



Let's check that the two functors agree on objects and morphisms.

• Let $R:\mathcal{E}$

$$\begin{split} \pi\big(p^1\big)\big(K_p(R)\big) &= \pi\big(p^{-1}\big)(p(R),R) \\ &= p(R) \end{split}$$

• Let $S, R : \mathcal{E}$ and $f : S \to R$ a morphism in \mathcal{E}

$$\begin{split} \pi\big(p^{-1}\big)\big(K_p(f)\big) &= \pi\big(p^{-1}\big)\big(p(f),\hat{f}\big) \\ &= p(f) \end{split}$$

Furthermore, we have to check that K_p preserves cartesian morphisms. Let f be cartesian. \hat{f} is (the canonical) isomorphism between the domains living in the same fiber, of two cartesian morphisms. In particular, it is an isomorphism, hence $(p(f), \hat{f})$ is cartesian by Lemma 3.1.4.

Lemma 4.2.4: G_p is natural in p.

Proof: Let $p: \mathcal{E} \to \mathcal{B}$ and $q: \mathcal{F} \to \mathcal{B}$ be two fibrations, and $F: p \to q$ be a morphism of fibrations. Let's check that the following diagram commutes

Let's check that the two functors agree on objects and morphisms. Let $(X,R):\int p^{-1}$.

$$\begin{split} G_q(F_{\nu^F}(X,R)) &= G_q\big(X,\nu^F(R)\big) \\ &= \nu^F_X(R) \\ &= F(R) \\ &= F\big(G_p(X,R)\big) \end{split}$$

Let $(X,R),(Y,S):\int p^{-1}$ and $(f_1,f_2):(X,R)\to (Y,S)$ be a morphism in $\int p^{-1}$.

$$\begin{split} G_q(F_{\nu^F}(f_1,f_2)) &= G_q\Big(f_1,\nu_{f_1^F}(S)^{-1}\circ\nu_X^F(f_2)\Big) \\ &= \left[f_1\right]_{F(R)}\circ\nu_{f_1^F}(S)^{-1}\circ\nu_X^F(f_2) \\ &= \left[f_1\right]_{F(R)}\circ\nu_{f_1^F}(S)^{-1}\circ F(f_2) \\ &= F\Big(\big[f_1\big]_R\Big)\circ F(f_2) \\ &= F\Big(\big[f_1\big]_R\circ f_2\Big) \\ &= F\Big(G_p(f_1,f_2)\Big) \end{split}$$

Lemma 4.2.5:

$$\Psi \circ \Phi \cong \mathrm{id}_{\mathbf{Fib}_{\mathcal{B}}}$$

Proof: We have exhibited the natural isomorphism

$$G: \Psi \circ \Phi \Longrightarrow \mathrm{id}_{\mathbf{Fib}_{\sigma}}$$

This concludes the proof of the main theorem.