Grothendieck fibrations

Adrien MATHIEU

2025-03-24

Assume that we have two categories \mathcal{B} and \mathcal{E} , and a functor $p: \mathcal{E} \to \mathcal{B}$.

Definition

For $R : \mathcal{E}$ and $X : \mathcal{B}$, we say that R refines X, or $R \sqsubset X$ if

X = p(R)

Assume that we have two categories \mathcal{B} and \mathcal{E} , and a functor $p: \mathcal{E} \to \mathcal{B}$.

Definition

For $R : \mathcal{E}$ and $X : \mathcal{B}$, we say that R refines X, or $R \sqsubset X$ if

X = p(R)

Assume that we have two categories \mathcal{B} and \mathcal{E} , and a functor $p: \mathcal{E} \to \mathcal{B}$.

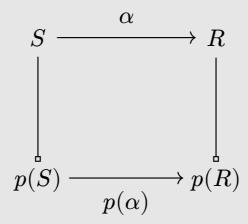
Definition

For $R : \mathcal{E}$ and $X : \mathcal{B}$, we say that R refines X, or $R \sqsubset X$ if

X = p(R)

Definition

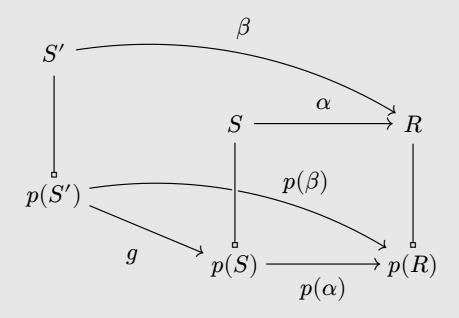
A morphism $\alpha: S \to R$ in \mathcal{E} is cartesian



Definition

A morphism $\alpha: S \to R$ in \mathcal{E} is *cartesian* when, for any morphism $\beta: S' \to R$ in \mathcal{E} and $g: p(S') \to p(S)$ such that

$$p(\beta) = p(\alpha) \circ g$$



Cartesian morphism

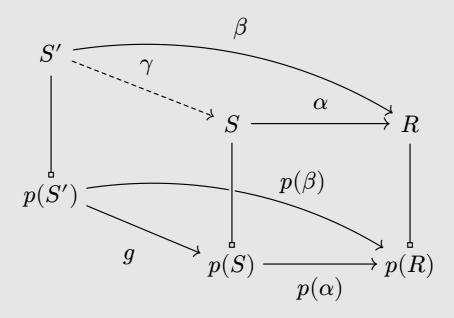
Definition

A morphism $\alpha: S \to R$ in \mathcal{E} is *cartesian* when, for any morphism $\beta: S' \to R$ in \mathcal{E} and $g: p(S') \to p(S)$ such that

$$p(eta) = p(lpha) \circ g$$

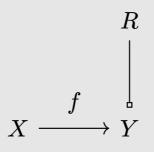
there exists a unique lifting $\gamma: S' \to S$ of g (ie $p(\gamma) = g$) such that

$$\beta = \alpha \circ \gamma$$



Definition

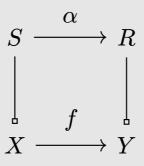
A functor $p: \mathcal{E} \to \mathcal{B}$ is a *fibration* if, for any $f: X \to Y$ in \mathcal{B} , and $R \sqsubset Y$



Fibration

Definition

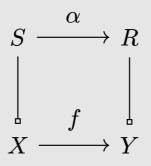
A functor $p: \mathcal{E} \to \mathcal{B}$ is a *fibration* if, for any $f: X \to Y$ in \mathcal{B} , and $R \sqsubset Y$ there exists a cartesian morphism $\alpha: S \to R$ above $f(p(\alpha) = f)$.



Fibration

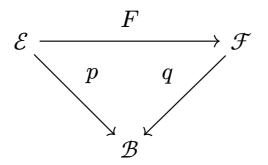
Definition

A functor $p : \mathcal{E} \to \mathcal{B}$ is a *fibration* if, for any $f : X \to Y$ in \mathcal{B} , and $R \sqsubset Y$ there exists a cartesian morphism $\alpha : S \to R$ above $f(p(\alpha) = f)$.



Given two fibrations $p: \mathcal{E} \to \mathcal{B}$ and $q: \mathcal{F} \to \mathcal{B}$, a fibration morphism $F: \mathcal{E} \to \mathcal{F}$ is a functor

- that preserves cartesian morphisms
- such that the following diagram commutes



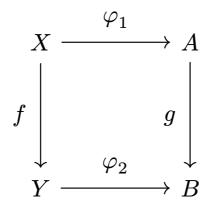
Let $\mathbf{Fib}_{\mathcal{B}}$ be the category of fibration and fibration morphisms over \mathcal{B} .

Example: the codomain fibration

Consider the category $\mathcal{B}^{\rightarrow}$ whose objects are morphisms $f: X \rightarrow Y$ in \mathcal{B} . For $f: X \rightarrow Y$ and $g: A \rightarrow B$ two objects of $\mathcal{B}^{\rightarrow}$, a morphism $(\varphi_1, \varphi_2): f \rightarrow g$ is a pair of morphisms

 $\varphi_1: X \to A$ $\varphi_2: Y \to B$

such that the following diagram commutes

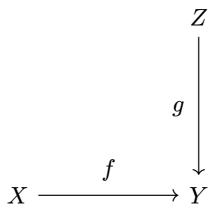


with obvious identities and compositions.

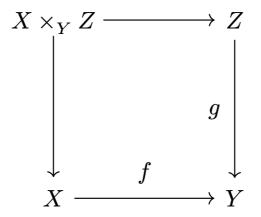
Definition

The codomain functor $\mathbf{cod}: \mathcal{B}^{\rightarrow} \rightarrow \mathcal{B}$ maps an object $f: X \rightarrow Y$ to Y, and a morphism (φ_1, φ_2) to φ_2 .

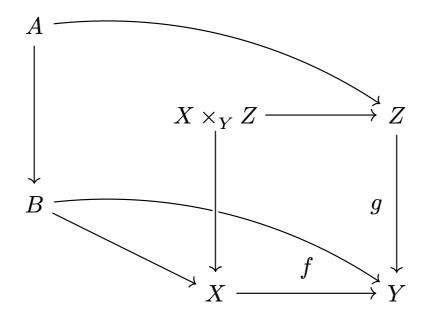
If \mathcal{B} has pullbacks, then **cod** is a fibration.



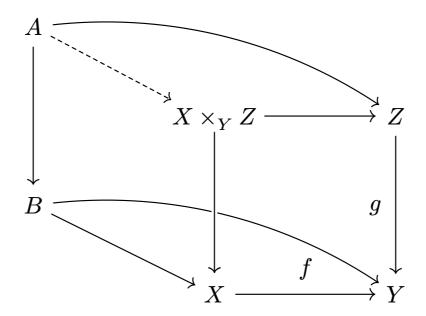
If \mathcal{B} has pullbacks, then **cod** is a fibration.



If \mathcal{B} has pullbacks, then **cod** is a fibration.



If \mathcal{B} has pullbacks, then **cod** is a fibration.



Fibered category

Definition

We note $\mathbf{Pfct}_{\mathcal{B}}$ the category of contravariant pseudofunctor from \mathcal{B} to \mathbf{Cat} .

An object $\mathcal{P} : \mathbf{Pfct}_{\mathcal{B}}$ is the data of:

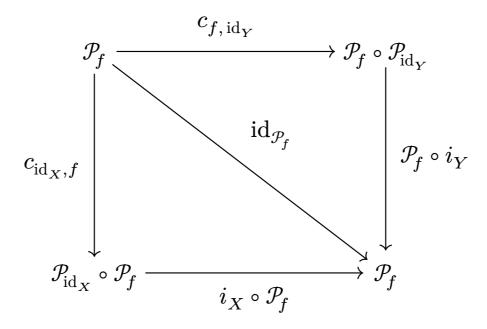
- for $X : \mathcal{B}$, a category $\mathcal{P}_X : \mathbf{Cat}$;
- for $f: X \to Y$ a morphism in \mathcal{B} , a functor $\mathcal{P}_f: \mathcal{P}_Y \to \mathcal{P}_X$;
- for $X : \mathcal{B}$, a natural isomorphism $i_X : \mathcal{P}_{\mathrm{id}_X} \Rightarrow \mathrm{id}_{\mathcal{P}_X}$, called the *pseudo identity* of \mathcal{P} at X;
- for f, g two morphism in \mathcal{B} , a natural isomorphism $c_{f,g} : \mathcal{P}_{g \circ f} \Longrightarrow \mathcal{P}_{f} \circ \mathcal{P}_{g}$, called the *pseudo composition* of \mathcal{P} at (f, g).

Satisfying additionally two coherence conditions.

Pseudofunctor Identity/composition coherence

Fibered category

For $X, Y : \mathcal{B}$ and $f : X \to Y$, we have



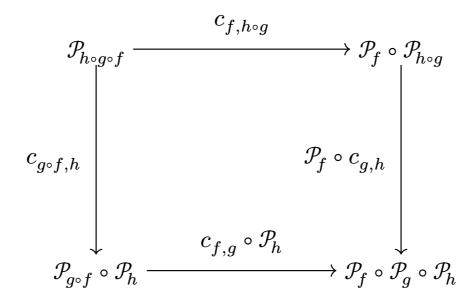
Pseudofunctor

Composition/composition coherence

For $W, X, Y, Z : \mathcal{B}$, and

$$f: W \longrightarrow X$$
$$g: X \longrightarrow Y$$
$$h: Y \longrightarrow Z$$

the following diagram commutes

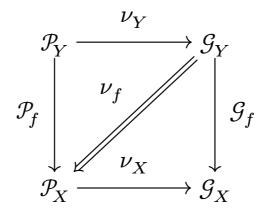


Definition

Let $\mathcal{F}, \mathcal{G}: \mathbf{Pfct}_{\mathcal{B}}$ be two pseudofunctors. A morphism $\nu : \mathcal{F} \to \mathcal{G}$ is a pseudonatural transformation between \mathcal{F} and \mathcal{G} .

That is, a morphism ν is the data:

- for $X : \mathcal{B}$, a morphism $\nu_X : \mathcal{F}_X \to \mathcal{G}_X$;
- for each morphism $f: X \to Y$, a natural transformation

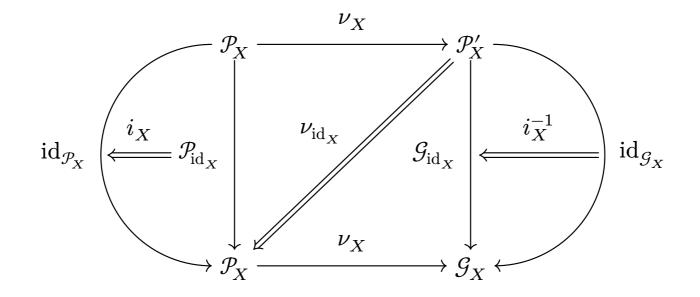


called the *pseudo naturality* of ν at f.

 ν satisfies additionally two coherence conditions.

Pseudofunctor morphism

For $X : \mathcal{B}$, the following pasting diagram is ν_X

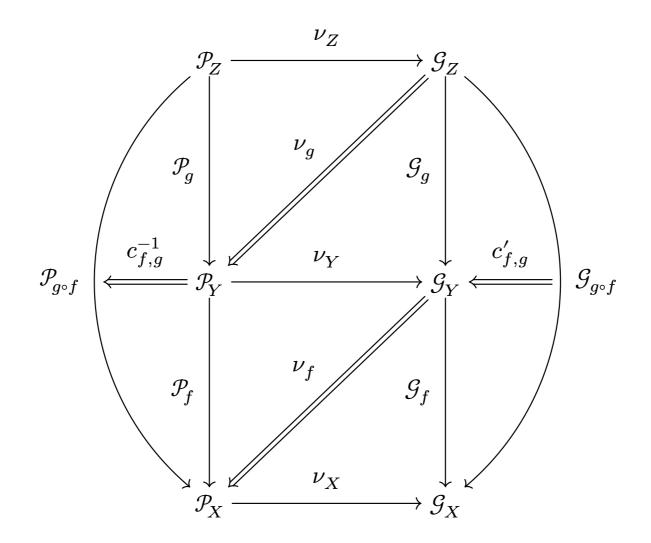


that is,

 $(\nu_X \circ i_X) \circ \nu_{\mathrm{id}_X} \circ \left(i_X'^{-1} \circ \nu_X \right) = \mathrm{id}_{\nu_X}$

Pseudofunctor morphism

For $X, Y, Z : \mathcal{B}, f : X \to Y$ and $g : Y \to Z$, the following pasting is $\nu_{g \circ f}$



that is,

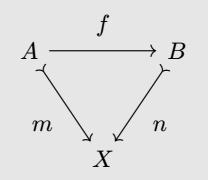
$$\nu_{g \circ f} = \left(\nu_X \circ c_{f,g}^{-1}\right) \circ \left(\nu_f \circ \mathcal{P}_g\right) \circ \left(\mathcal{G}_f \circ \nu_g\right) \circ \left(c_{f,g}' \circ \nu_Z\right)$$

For this example, assume that $\mathcal B$ has pullbacks.

Let $X : \mathcal{B}$ be an object.

Definition

The subobjects of X is the category \mathbf{Sub}_X whose objects are monos into X, up to isomorphism. Given $m, m' : \mathbf{Sub}_X$, a morphism $f : m \to m'$ is a morphism in \mathcal{B} making the following diagram commute

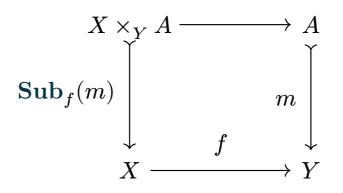


Morphisms in \mathbf{Sub}_X are all monos in \mathcal{B} , and between two objects there is at most one morphism, making \mathbf{Sub}_X a poset category. Hence, we write $m \leq n$ if there is a morphism $m \to n$.

Example: the subobject pseudofunctor

Let $X, Y : \mathcal{B}$ and $f : X \to Y$. If $m : \mathbf{Sub}_Y$, say $m : A \to Y$.

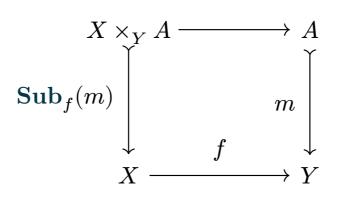
One can consider $\mathbf{Sub}_{f}(m)$ defined by taking the following pullback



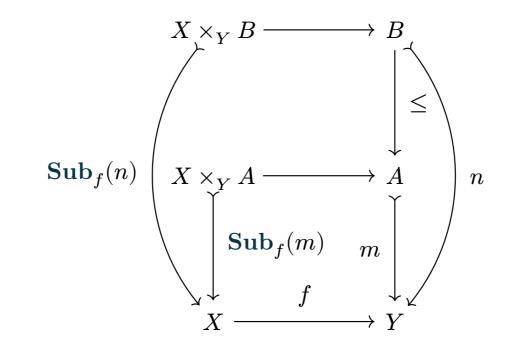
Example: the subobject pseudofunctor

Let $X, Y : \mathcal{B}$ and $f : X \to Y$. If $m : \mathbf{Sub}_Y$, say $m : A \to Y$.

One can consider $\mathbf{Sub}_{f}(m)$ defined by taking the following pullback



Suppose $n \leq m$:

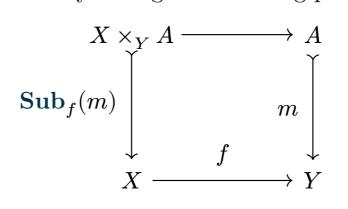


Example: the subobject pseudofunctor

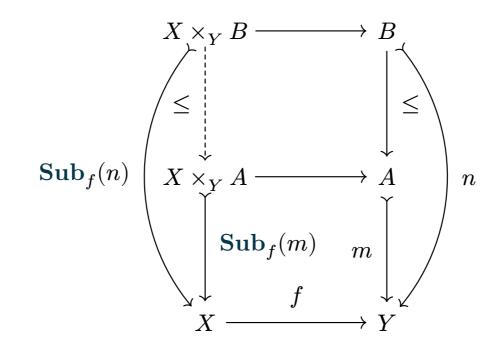
Fibered category

Let $X, Y : \mathcal{B}$ and $f : X \to Y$. If $m : \mathbf{Sub}_Y$, say $m : A \to Y$.

One can consider $\mathbf{Sub}_{f}(m)$ defined by taking the following pullback



Suppose $n \leq m$:



by pullback, there exists a map $X \times_Y B \to X \times_Y A$ making the left triangle commute.

Adrien MATHIEU

We have shown that \mathbf{Sub}_X and \mathbf{Sub}_Y are categories, and, for $f: X \to Y$,

 $\mathbf{Sub}_f:\mathbf{Sub}_Y\to\mathbf{Sub}_X$

is a functor. In fact, this operation is itself functorial in f, proving the

TheoremSubobjects $\mathbf{Sub}: \mathcal{B}^{op} \to \mathbf{Cat}$ form a presheaf into categories.

The proof goes by pasting pullback diagrams together to form pullback diagrams.

Equivalence

For a category \mathcal{B} , we have the following equivalence

Theorem

$\mathbf{Fib}_{\mathcal{B}}\cong\mathbf{Pfct}_{\mathcal{B}}$

This equivalence states that a fibration is exactly the collection of its fibers.

One direction of this equivalence is known as the Grothendieck construction, which takes a collection of fibers above a category \mathcal{B} and constructs a fibration from its total category, on \mathcal{B} , whose fibers are exactly those we started with.