
Syntax and Semantics of a Linear
Dependent Type Theory

Adrien Mathieu*

Contents
1. Summary . 1

1.1. General Context . 1
1.2. Research problem . 1
1.3. Our contribution . 1
1.4. Arguments supporting its validity . 2
1.5. Summary and future work . 2
1.6. Outline of the document . 2

2. Syntax of the Hanaba calculus . 2
2.1. Definitional equality . 6
2.2. Contexts . 6
2.3. Universe . 7
2.4. Variables . 7
2.5. Function space . 7
2.6. Universal quantification . 7
2.7. Singleton type . 8

3. Semantics of the Hanaba calculus . 8
3.1. Models of untyped linear 𝜆 calculus . 9
3.2. Fibered double categories . 10
3.3. Foundations of Hanaba models . 14
3.4. Global contexts ℬ . 15
3.5. Pointed contexts ℬ∗ . 16
3.6. Semantic type formers . 20

Bibliography . 21
Appendix . 𝜔

*Under the supervision of Paul-André Melliès at Irif.

Section 1. Summary

If it was so, it might be; and if it were so, it would be,
but as it isn’t, it ain’t. That’s logic.

— Tweedledee, about LDTT

1. Summary
1.1. General Context
Over the last decades, proof mechanization has become a highly focused problem in logic. By
proof mechanization, we mean making a computer automatically verify that a mathematical
proof is correct. Although one might initially think that this is just a matter of having a
sufficiently smart proof checker, on par with what mathematicians routinely do, it has appeared
that the problem is much more deep, leading logicians to consider alternative foundations of
mathematics, more amenable to mechanization: dependent type theory [1], [2] (later refered to as
DTT). This path has lead to revolutionary ideas, unveiling a deep connection between logic and
homotopy theory [3], [4], [5], sprouting into Homotopy Type Theory [6], which is still actively
studied today.

At the same time, Girard discovered what has now become linear logic [7] (later refered to as
LL), as if he put the most fundamental logical connectives that were known at the time in a
particule accelerator, making them collide, break, and reveal that they are, in fact, composed of
“smaller”, more primitive, ones. This very fundamental discovery has, surprisingly, managed to
reconcile two worlds that were thought to be completely disjoint: classical logic, and intuition-
istic logic. This is crucial, as modern mathematics are built in a classical framework, yet type
theories are intuitionistic in nature. Linear logic has since become a very rich research area,
relating logic with many other fields.

1.2. Research problem
Despite their respective importance in the field, and several attempts [8], [9], no satisfactory
linear dependent type system has been found yet. Achieving this would be a key milestone,
as it would, among other things, improve our ability to do classical reasonings in a dependent
setting. The issue is that linear logic expresses finely the dependence of certain formulas with
respect to other formulas, seen as resources.

1.3. Our contribution
During the internship, we have studied the problem of defining a linear dependent type theory,
by interleaving two complementary viewpoints: syntax and semantics. Indeed, we have
• identified a key type former, the singleton type, as a bridge between LL and DTT
• developed a linear dependent type theory, the Hanaba system. The main technical novelties

are
1. a usage of several contexts to speak of linearity and dependence (modifying contexts with

this purpose in mind has been done before, eg [8], but not in the same way)
2. the usage of the aforementioned singleton type
3. mixing intrinsic and extrinsic semantics of the 𝜆-calculus, after [10]

We have not proved standard meta-theoretical results for the system, such as subject
reduction, inversion lemmas, canonicity, confluence, strong normalisation, consistency, …

• developed a notion of models for the Hanaba system on top of fibered double categories. A
model is, intuitively, a mathematical object in which one can interpret the Hanaba system,
but we haven’t fully defined the interpretation yet.

– 1 –

Section 2. Syntax of the Hanaba calculus

• built a “concrete” family of such models. These are useful for several reasons:
1. they help developping an intuition of what Hanaba models look like
2. their existence is a key step in proving some meta-theoretical results, such as consistency

This family of models is more of a framework on top of which to build models, rather that
one, specific model, as it can build a model without semantic constructors from any fibered
double category. Additional assumptions can be made to build models with more features.

1.4. Arguments supporting its validity
The syntactic and semantics of the Hanaba system were developed simultaneously. Where it
was not clear which option to choose when defining the type system, the same problem has
been studied from the semantical point of view, and reciprocally. Hence, even if we haven’t had
the time to prove basic properties of the system, which would support its validity, the system
itself and its models have emerged naturally, so we are confident that, with enough time, we
could show its consistency.

1.5. Summary and future work
First and foremost, the semantics are not on par with the syntax. Indeed, we have not provided
the semantic counterparts to universes, with, coproduct and the exponential. We expect their
treatement to be similar to that of models of DTT and linear logic, repsectively.

That being said, some obvious, yet important, technicalities have not been covered during the
internship, for time reasons (the size of the system rules out proving these theorems “by hand”,
and formalizing the whole system would itself probably require months of work): confluence,
strong normalization, canonicity, subject reduction, soundness, completeness, the actual inter-
pretation of the calculus in the model, …

Also, we have not “properly” handled universes: we have assumed Type : Type, as is usually
done in prototype theories (again for time reasons). Fixing this should be completely straight-
forward, as is done with other DTTs, as our extensions do not interfere with universes.

Besides these minor points (in the sense that solving those problems would probably not require
new ideas, as these are common problems which have already been solved in the literature for a
wide variety of systems), the Hanaba system embeds only the intuitionistic fragment of linear
logic [11]. Crucially, it lacks an involutive negation. We believe such an involutive negation
could be added, syntactically by supporting continuations, semantically by considering chirality
categories.

1.6. Outline of the document
The document starts with Section 2, which presents the main ideas of the syntactic system.
Then, it follows up with Section 3, which presents exhaustively the definition of the basis of a
Hanaba model. Aquaintance with Grothendieck fibrations is required in order to understand it;
in case the reader needs some reminders, they can read Appendix A.

Most of the proofs have been moved to the appendix. Yet, the appendix also contains the
construction the the chain models in Appendix F. We suggest reading that section of the
appendix, if time permits, above others, as it’s the one that contains more novel ideas.

2. Syntax of the Hanaba calculus
Developing a linear dependent type theory therefore involves introducing a more fine-grained
control of dependency in a dependent type theory. The main obstruction in doing so is that, in

– 2 –

Section 2. Syntax of the Hanaba calculus

dependent type theory, types themselves can depend (or, at least, observe) the resources whose
usage we carefully track. Specifically, it appears that in the current presentation of dependent
type theories, substitutions between contexts do not bother with keeping track of what each
term of the substitution actually depends on: every term simply implicitely depends on the
whole domain context.

Consider, for instance, a vector type Vec𝐴(𝑛) of lists of size 𝑛, and of elements of type 𝐴.
Consider now the substitution that doubles each element in such a list of natural numbers,
leaving its size unchanged. In usual DTT, this would look as follows

map(𝜆𝑥.2𝑥, 𝑣)

𝑛
𝑣 : Vecℕ(𝑛) 𝑢 : Vecℕ(𝑚)

𝑛 : ℕ 𝑚 : ℕ

But actually, the term for the variable 𝑚 is just 𝑛, it does not depend on 𝑣. So one could be
more parsimonious

map(𝜆𝑥.2𝑥, 𝑣)

𝑛

𝑣 : Vecℕ(𝑛) 𝑢 : Vecℕ(𝑚)

𝑛 : ℕ 𝑚 : ℕ

We can therefore consider a more general form of substitution, where each variable of the
codomain context also specifies up to which layer it depends. That is, a substitution might look
like so

𝑡𝑛+1

𝑡𝑛

𝑥𝑚 : 𝐴𝑙

⋮

𝑥𝑛+1 : 𝐴𝑛+1 𝑦𝑛+1 : 𝐵𝑛+1

𝑥𝑛 : 𝐴𝑛 𝑦𝑛 : 𝐵𝑛

𝑥𝑛−1 : 𝐴𝑛−1

⋮ ⋮

such term 𝑡𝑛+1 is exactly the same as in the following situation, where we pull back everything
below it

– 3 –

Section 2. Syntax of the Hanaba calculus

𝑡𝑛+1

𝑥𝑚 : 𝐴𝑙

⋮

𝑥𝑛+1 : 𝐴𝑛+1 𝑦𝑛+1 : 𝐵𝑛+1[𝑦1 ↦ 𝑡1, …, 𝑦𝑛 ↦ 𝑡𝑛]

𝑥𝑛 : 𝐴𝑛

𝑥𝑛−1 : 𝐴𝑛−1

⋮

that is, it’s a substitution

𝑥𝑛+1 : 𝐴𝑛+1, …, 𝑥𝑚 : 𝐴𝑚 ⟶ 𝐵𝑛+1[𝑦1 ↦ 𝑡1, …, 𝑦𝑛 ↦ 𝑡𝑛]

above the context 𝑥1 : 𝐴1, …, 𝑎𝑛 : 𝐴𝑛. This naturally suggests that we are interested in judge-
ments of the form

Γ ⊨ Δ ⊢ 𝑡 : 𝐴

where Δ proves 𝐴 over the context Γ.

We furthermore note that context substitutions are not the only place where dependent type
theory is “wasteful” with respect to dependency. Indeed, in DTT, the primitive function type
is Π types, which make both the resulting value and the resulting type depend on the input.
While this should be expressible in a linear dependent setting, we need finer-grained primitive
function spaces, expressing that only the resulting value, or the resulting type, depend on the
input, because we cannot simply discard a value that we don’t care about in a linear setting.
The former type former is the linear implication 𝐴 ⊸ 𝐵, with constructor 𝜆𝑥.𝑡 where 𝑥 appears
in 𝑡 but not in 𝐵, and the latter is a universal quantification ∀𝑥:𝐴𝐵, with constructor Λ𝑥.𝑡
where 𝑥 appears in 𝐵 but not in 𝑡.

From this, we deduce two key insights. First, the judgement Γ ⊨ Δ ⊢ 𝑡 : 𝐴 is not enough, because
we need to distinguish between variables that can appear in the type, but not in the term, and
vice versa. Hence, we introduce a third context Θ in

Γ ⊨ Θ | Δ ⊢ 𝑡 : 𝐴

where variables in Θ can only be used in types, and variables in Δ can only appear in 𝑡. Hence,
the introduction rules for the two type formers that we have described are

Γ ⊨ Θ | Δ, 𝑥 : 𝐴 ⊢ 𝑡 : 𝐵
Γ ⊨ Θ | Δ ⊢ 𝜆𝑥.𝑡 : 𝐴 ⊸ 𝐵

Γ ⊨ Θ, 𝑥 : 𝐴 | Δ ⊢ 𝑡 : 𝐵
Γ ⊨ Θ | Δ ⊢ Λ𝑥.𝑡 : ∀𝑥:𝐴𝐵

Secondly, this is not enough to express Π types, because variables so far cannot appear both
in terms and types. Rather than introducing a third constructor ℷ𝑥.𝑡, introducing variables

– 4 –

Section 2. Syntax of the Hanaba calculus

in both contexts at once, we introduce a singleton type {𝑎}𝐴 for 𝑎 : 𝐴. Elements of {𝑎}𝐴 are
thought of as those equal to 𝑎, but the term 𝑎 itself appears in the type, whereas its inhabitants
appear as terms. Thus, we can decompose

Π𝑎:𝐴𝐵 ≔ ∀𝑎:𝐴!{𝑎}𝐴 ⊸ 𝐵

Similarly, we can decompose the Σ type in a tensor product type 𝐴 ⊗ 𝐵 and an existential type
∃𝑎:𝐴𝐵, and have a similar equation

Σ𝑎:𝐴𝐵 ≔ ∃𝑎:𝐴{𝑎}𝐴&𝐵

Combining these two insights requires some care though. Indeed, in a usual DTT context, one
might have the following introduction rule for the singleton type.

Γ ⊢ 𝑎 : 𝐴
Γ ⊢ 𝑎 : {𝑎}𝐴

But in our setting, this is ruled out by the fact that a term cannot, in general, appear both on
the left and on the right of the colon in the typing judgement, as these two places live above
different contexts, so the following rule is ill-formed:

Γ ⊨ Θ | Δ ⊢ 𝑎 : 𝐴
Γ ⊨ Θ | Δ ⊢ 𝑎 : {𝑎}𝐴

The first step to fix this issue is to relax a little bit the rule to include every term that is
definitionally equal to 𝑎

Γ ⊨ Θ | Δ ⊢ 𝑎′ ≡ 𝑎 : 𝐴
Γ ⊨ Θ | Δ ⊢ 𝑎′ : {𝑎}𝐴

Presented as such, if one looks just at the conclusion of this rule, we have solved our issue: two
different terms (𝑎′ and 𝑎) appear on the left and on the right of the colon. Yet, if we look at the
premise of the rule, one sees an impossible statement: 𝑎′ ≡ 𝑎 : 𝐴, since they live above different
contexts. Hence, we introduce a new typing judgement, stating a heterogeneous definitional
equality between a term defined in a term context, and a term defined in a type context

Γ ⊨ Θ | Δ ⊢ 𝑢 ↦ 𝑣 : 𝐴

with the idea that the introduction rule for the singleton type would be the following

Γ ⊨ Θ | Δ ⊢ 𝑎′ ↦ 𝑎 : 𝐴
Γ ⊨ Θ | Δ ⊢ 𝑎′ : {𝑎}𝐴

We will see, however, that in order to make ↦ a congruence, in order to keep track of
variables introduced inside the terms 𝑎 and 𝑎′, we need two more contexts in the heterogeneous
definitional equality judgement.

The Hanaba system is a intuitionistic linear dependent type system, ie. it is a MLTT [2] with
the intuitionistc fragment of LL [11], that is, ⊗, !, ⊸, & and ⊕. Crucially, it lacks negation,
and hence ? and ⅋. The full specification of the calculus can be found in Appendix B. We will
present here its key ideas.

One of the main points of the Hanaba calculus is the decomposition of Π types as a universal
quantification, which gives dependency, a linear implication, which gives linearity, and a
singleton type, which relates the two “levels”.

– 5 –

Section 2. Syntax of the Hanaba calculus

Let us describe the Hanaba calculus step by step. This involves defining the set 𝕋 of terms
inductively, as well as three kind of contexts:
• Γ, Θ, Σ are “dependent” contexts, that is, contexts used additively, and where each type can

depend on previous variables in the context, as is usual in DTT
• Ξ is a “linear” context, that is, it will be used multiplicatively, and types cannot depend on

variables in the same context (type can have free variables, though)
• Δ is a “linear” annotated context, that is, same as Ξ, but variables can be annotated with

free variables:

Δ ⩴ ⋄ | Δ, 𝕍 : 𝕋 | Δ, 𝕍 ↦ 𝕍 : 𝕋

With this in mind, we will define the following judgements
• ⊢ Γ ctxt: “Γ is a well-formed (dependent) context”
• Γ ⊢ Δ ctxt: “Δ is a well-formed (linear) context under (dependend) context Γ”
• Γ ⊢ 𝑇 type: “the type 𝑇 is well-defined in context Γ”
• Γ ⊨ Θ | Δ ⊢ 𝑡 : 𝑇 : “𝑡 has type 𝑇 in global context Γ, type context Θ and term context

Δ”. Note that Γ is an intuitionistic context whose variables can appear both in 𝑡 and in 𝑇
(intuitionistic in the sense that variables can appear any number of times, or, equivalently,
that it will be used additively in typing rules), Θ is an intuitionistic context whose variables
can appear only in 𝑇 , and Δ is a linear context (its variables must appear exactly once)
whose variables can appear only in 𝑡.

• Γ ⊨ Θ | Σ | Δ | Ξ ⊢ 𝑢 ↦ 𝑣 : 𝐴: “𝑢 is under 𝑣 of type 𝐴 in global context Γ, type context Θ,
exclusive type context Σ, term context Δ” and shared term context Ξ. As before, Γ is an
intuitionistic context whose variables can appear in 𝑢, 𝑣 and 𝐴, Θ is an intuitionistic context
whose variables can appear only in 𝑣 and 𝐴, Σ is an intuitionistic context whose variables
can appear only in 𝐴, Δ is an enriched linear context whose variables can appear only in 𝑢,
and Ξ is a linear context whose variables can appear only in 𝑢 and 𝑣

• Γ ⊨ Θ | Δ ⊢ 𝑢 ≡ 𝑣 : 𝐴: “𝑢 is definitionally equal to 𝑣 of type 𝐴 in global context Γ, type
context Θ, term context Δ”

• Γ ⊢ 𝐴 ≡ 𝐵 type: “𝐴 is a type definitionally equal to 𝐵 in global context Γ”

2.1. Definitional equality
We will not give here the exact rules for the definitional equality, but they can be easily intuited:
it is an equivalence relation, that is a congruence with respect to the syntax, and which might
closed under 𝜂 (if one wishes the theory to be extensional).

Similarly, the definitional equality between types could be expressed purely in terms of the
definitional equality of terms, which happen to be types, but it is technically easier to include
it as an additional judgement.

2.2. Contexts
Dependent context formation is very much akin to what happens in usual DTT

Ctxt-NL-empty
⊢ ⋄ ctxt

⊢ Γ ctxt Γ ⊢ 𝐴 type Ctxt-NL-cons
⊢ Γ, 𝑥 : 𝐴 ctxt

Linear context formation, on the other hand, happens under a dependent context

Ctxt-L-empty
Γ ⊢ ⋄ ctxt

Γ ⊢ Δ ctxt Γ ⊢ 𝐴 type Ctxt-L-cons
Γ ⊢ Δ, 𝑥 : 𝐴 ctxt

– 6 –

Section 2. Syntax of the Hanaba calculus

Γ ⊢ Δ ctxt Γ ⊨ ⋄ | ⋄ ⊢ 𝑦 : 𝐴 Ctxt-L-cons’
Γ ⊢ Δ, 𝑥 ↦ 𝑦 : 𝐴 ctxt

2.3. Universe
In order to keep the Hanaba system simple, we assume type-in-type. This is blatantly incoherent,
but universes are not the construction under scrutiny here, and replacing it with a universe
hierarchy is orthogonal to our work.

𝕋 ≔ … | Type

Type-F
Γ ⊢ Type type

Γ, Θ ⊢ 𝐴 type Type-I
Γ ⊨ Θ | ⋄ ⊢ 𝐴 : Type

The rule Type-I is particularly important as it shows that a type has access to variables that
occur in Γ and Θ, but not in Δ.

2.4. Variables
Assume we have a fixed, infinite set of variables 𝕍. A term can be a variable

𝕋 ≔ … | 𝕍

Judgement for typing variables are the axiom rules

𝑥 : 𝐴 ∈ Γ ⊢ Γ, Θ ctxt Ax-NL
Γ ⊨ Θ | ⋄ ⊢ 𝑥 : 𝐴

Γ, Θ ⊢ 𝑥 : 𝐴 ctxt Ax-L
Γ ⊨ Θ | 𝑥 : 𝐴 ⊢ 𝑥 : 𝐴

Γ, Θ ⊢ 𝑥 ↦ 𝑦 : 𝐴 ctxt Ax-L’
Γ ⊨ Θ | 𝑥 ↦ 𝑦 : 𝐴 ⊢ 𝑥 : 𝐴

Note that free variables of the term in a judgement of the form 𝑡 : 𝐴 can only occur in Γ, any
number of times, or in Δ, exactly once.

2.5. Function space
𝕋 ⩴ … | 𝜆𝕍.𝕋 | 𝕋𝕋 | 𝕋 ⊸ 𝕋

Γ ⊢ 𝐴 type Γ ⊢ 𝐵 type ⊸-F
Γ ⊢ 𝐴 ⊸ 𝐵 type

Γ ⊨ Θ | Δ, 𝑥 : 𝐴 ⊢ 𝑡 : 𝐵 ⊸-I
Γ ⊨ Θ | Δ ⊢ 𝜆𝑥.𝑡 : 𝐴 ⊸ 𝐵

Γ ⊨ Θ | Δ1 ⊢ 𝑢 : 𝐴 ⊸ 𝐵 Γ ⊨ Θ | Δ2 ⊢ 𝑣 : 𝐴 ⊸-E
Γ ⊨ Θ | Δ1, Δ2 ⊢ 𝑢𝑣 : 𝐵

With Γ and Θ fixed, these definitions correspond to the usual linear logic implication.

2.6. Universal quantification
Note that the linear map space, 𝐴 ⊸ 𝐵, does not bind the argument variable at the type-level:
𝐵 does not depend on 𝑎 : 𝐴. Dually, Hanaba has a universal quantification type, whose terms
are those that bind a variable but do not “use” it

𝕋 ⩴ … | Λ𝕍.𝕋 | 𝕋@𝕋 | ∀𝕍:𝕋𝕋

Γ ⊢ 𝐴 type Γ, 𝑎 : 𝐴 ⊢ 𝐵 type ∀-F
Γ ⊢ ∀𝑎:𝐴𝐵 type

Γ ⊨ Θ, 𝑥 : 𝐴 | Δ ⊢ 𝑡 : 𝐵 Γ, Θ ⊨ Δ ctxt ∀-I
Γ ⊨ Θ | Δ ⊢ Λ𝑥.𝑡 : ∀𝑥:𝐴𝐵

Γ ⊨ Θ | Δ ⊢ 𝑢 : ∀𝑎:𝐴𝐵 Γ, Θ ⊨ ⋄ | ⋄ ⊢ 𝑣 : 𝐴 ∀-E
Γ ⊨ Θ | Δ ⊢ 𝑢@𝑣 : 𝐵[𝑎 ↦ 𝑣]

– 7 –

Section 3. Semantics of the Hanaba calculus

Note that, in the rule ∀-I, the bound variable is not added in the term context Δ, but in the
type context Θ, which has not axiom rules. Variables in Θ can only be accessed when Θ is
merged with the global context Γ, as in rule ∀-E. Dually, the latter rule does not require the
argument to be defined in the same context as the application itself.

2.7. Singleton type
The two previous sections have introduced, respectively, linearity and dependency, in a separate
fashion: you can either bind a variable on which a type can depend, or you can bind it so
that the term (linearly) depends on it. This is not enough to express, say, Π types, where the
variable bound is used both in the term and in the type. To link these two worlds, we need
the singleton type {𝑎}𝐴. Elements of {𝑎}𝐴, where 𝑎 : 𝐴, are thought of as being definitionally
equal to 𝑎. However, inhabitants of {𝑎}𝐴 live at the term level, whereas 𝑎 itself lives at the type
level. To express a definitional equality between terms that live at different levels, we need a
new judgement: 𝑢 ↦ 𝑎 : 𝐴. The idea is that having a 𝑢 : {𝑎}𝐴 is the same as 𝑢 ↦ 𝑎 : 𝐴 holding,
and ↦ should additionally be a congruence.

Γ ⊨ ⋄ | ⋄ ⊢ 𝑎 : 𝐴 {}-F
Γ ⊢ {𝑎}𝐴 type

Γ ⊨ Θ | ⋄ | Δ | ⋄ ⊢ 𝑡 ↦ 𝑎 : 𝐴 {}-I
Γ ⊨ Θ | Δ ⊢ loop 𝑡 : {𝑎}𝐴

Γ ⊨ Θ | Δ2, 𝑥 ↦ 𝑎 : 𝐴 ⊢ 𝑣 : 𝐵 Γ ⊨ Θ | Δ1 ⊢ 𝑢 : {𝑎}𝐴 {}-E
Γ ⊨ Θ | Δ1, Δ2 ⊢ let loop 𝑥 = 𝑢 in 𝑣 : 𝐵

The rules for the judgement Γ ⊨ Θ | Σ | Δ | Ξ ⊢ 𝑢 ↦ 𝑣 : 𝐴 follow closely the typing rules. For
instance, we have the following rules

Γ, Θ, Σ ⊢ 𝑥 ↦ 𝑢 : 𝐴 ctxt Ax-↦-L’
Γ ⊨ Θ | Σ | 𝑥 ↦ 𝑢 : 𝐴 | ⋄ ⊢ 𝑥 ↦ 𝑢 : 𝐴

Γ, Θ, Σ ⊢ 𝑥 : 𝐴 ctxt Ax-↦-L
Γ ⊨ Θ | Σ | ⋄ | 𝑥 : 𝐴 ⊢ 𝑥 ↦ 𝑥 : 𝐴

Γ ⊨ Θ | Σ | Δ | Ξ, 𝑥 : 𝐴 ⊢ 𝑢 ↦ 𝑣 : 𝐵 ⊸-I-↦
Γ ⊨ Θ | Σ | Δ | Ξ ⊢ 𝜆𝑥.𝑢 ↦ 𝜆𝑥.𝑣 : 𝐴 ⊸ 𝐵

Γ ⊨ Θ | Σ, 𝑥 : 𝐴 | Δ | Ξ ⊢ 𝑢 ↦ 𝑣 : 𝐵 ∀-I-↦
Γ ⊨ Θ | Σ | Δ | Ξ ⊢ Λ𝑥.𝑢 ↦ 𝜆𝑥.𝑣 : ∀𝑥:𝐴𝐵

with this, we can reconstruct the intuitionistic Π type as

Π𝑎:𝐴𝐵 ≔ ∀𝑎:𝐴!{𝑎} ⊸ 𝐵

3. Semantics of the Hanaba calculus
Following the logic of [1], [12], we will define a semantic couterpart to the previously defined
system. Our definition will rely on fibered double category, which is inspired by comprehension
categories [13] and fibrational models of DTT. It will also rely on extrinsic term semantics, as
in [10].

More specifically, we will define the notion of fibered double category, which is a framework in
which to speak of models of DTT, as will be explained later. Similarly, we will use monoidal
closed categories as the backbone of models of linear logic. As syntactically our system has
three contexts, stacked onto each other, semantically, our models will be defined as two fibered
double category sitting on top of each other (representing respectively the contexts Γ and the
context Θ), as well monoidal closed categories on top of it, representing the category whose
elements are contexts Δ.

In a way, the separation between the type context, and the term context is reminescent of
some restrictions of proof irrilevant universes. Indeed, terms well typed in our system are those
where variables of the type context are only used to build types, which can be thought of as

– 8 –

Section 3. Semantics of the Hanaba calculus

everything that is erased at compile time. Under this interpretation, a term is well-typed if,
after performing a “type erasure”, it doesn’t contain any variable of the type context anymore.

This is not yet a fully semantical condition, though. A better way to phrase this would be
to say that the behavior of the term (what is obtained after the erasure) is invariant under
substitutions that only affect variables that appear in the type context.

To express this semantically, one has to consider a category of type contexts, on top of which
is a fibered model of linear logic. For each type context Θ, there is a fiber in which morphisms
Δ → 𝐴 represent terms 𝑡 such that Θ | Δ ⊢ 𝑡 : 𝐴. However, such a term can still “depend” on
Θ, so we additionally have a model ℳ of untyped lambda calculus in which to interpret 𝑡: ⦃𝑡⦄ ∈
ℳ in such a way that for any substitution 𝜌 : Θ′ → Θ, we have ⦃𝑡{𝜌}⦄ = ⦃𝑡⦄.

Of course, this all actually lives on top of a global context Γ, that is, in a fiber above Γ. Hence
a Hanaba model is two fibrations, one sitting above the other, with a fibered model of untyped
lambda calculus.

3.1. Models of untyped linear 𝜆 calculus
Hanaba models are partly built as extrinsic models of 𝜆 calculus, in the spirit of [10]. The
motivating example is the following:

⋄ ⊨ 𝛼 : Type | ⋄ ⊢ 𝜄2@𝛼@1 ∗ : 𝛼 ⊕ 1

Note that, in this term, the variable 𝛼 appears, but is irrilevant as to the “meaning” of the term.
That is, if we substitute 𝛼 for ℕ or 1, it doesn’t change its computational behavior, yet the
two terms are not exactly equal. Hence, we would like to have a “type erasure” operation that
erases from the term the parts of it that are not relevant for its computational behavior, turning
𝜄2@𝛼@1 ∗ into 𝜄2 ∗. Of course, the resulting term is not type correct, as the type information
has been forgotten, so such a “type erasure” operation must have as codomain an untyped
setting.

Semantically, such codomain will be a fibration over a base category whose fibers are models
of untyped linear 𝜆 calculus. Let us first define the latter, as in [14].

Definition 3.1.1 (Model of linear 𝜆 calculus)

A model of linear 𝜆 calculus is a monoidal closed category (𝒞, 𝐼, ⊗, ⊸) with a universe 𝑈 :
𝒞 equipped with a retraction

lam

app
𝑈 ⊸ 𝑈 𝑈

ie. such that

app ∘ lam = id𝑈⊸𝑈
♣

– 9 –

Section 3. Semantics of the Hanaba calculus

Definition 3.1.2 (Morphism of model of linear 𝜆 calculus)

A morphism between a model (𝐶, 𝐼, ⊗, ⊸, 𝑈, app, lam) and (𝐶′, 𝐼′, ⊗′, ⊸′, 𝑈 ′, app′, lam′)
is a closed monoidal functor 𝐹 : 𝐶 → 𝐶′ such that

𝐹(𝑈) = 𝑈 ′

𝐹(app) = app′

𝐹(lam) = lam′

♣

Models of linear 𝜆 calculus and their morphisms form a category L𝜆Mod , which is a subcat-
egory of Cat.

Note that L𝜆Mod is exactly the category of diagrams of shape 𝒮 in the category of monoidal
closed categories, where 𝒮 is the free monoidal closed category with an object 𝑃 , as well as a
retraction 𝑃 ⊸ 𝑃 ⊲ 𝑃 .

Definition 3.1.3 (L𝜆Mod-fibered fibration)

A L𝜆Mod-fibered fibration is a fibration 𝑝 : 𝒞 → 𝒟 such that the fiber pseudo-functor
𝑝−1 factors through the forgetful functor L𝜆Mod → Cat.

♣

3.2. Fibered double categories
Hanaba models are inspired by the fibrational approach of categorical semantics [15], double
categories [16]. Hence, let us define a notion of fibered double category, mixing the two notions.

Definition 3.2.1 (Double category)

A double category is a pair of categories ℰ and ℰ forming an internal graph in the category
Cat

𝑠 𝑡

ℰ

ℰ ℰ

where 𝑠 is the source functor and 𝑡 the target functor, equipped with a unit functor 𝑒 :
ℰ → ℰ making the following diagram commute

𝑠 𝑡

idℰ

𝑒

idℰ

ℰ

ℰ ℰ ℰ

and a composition functor

⋄ : ℰ → ℰ

– 10 –

Section 3. Semantics of the Hanaba calculus

making the following diagram commute

𝑠 𝑡

⋄

𝜋1 𝜋2

𝑠 𝑡 𝑠 𝑡

ℰ

ℰ

ℰ ℰ

ℰ ℰ ℰ

The unit must behave as an identity with respect to composition, that is, the following
two triangles must commute

ℰ ×ℰ 𝑒

𝜋1 ⋄

ℰ ×ℰ ℰ ℰ ×ℰ ℰ

ℰ

𝑒 ×ℰ ℰ

𝜋2 ⋄

ℰ ×ℰ ℰ ℰ ×ℰ ℰ

ℰ

Furthermore, the composition must be associative, that is, the following diagram must
commute (note that this diagram is well-defined by definition of ⋄):

id
ℰ

×ℰ ⋄

⋄ ×ℰ id
ℰ

⋄

⋄

ℰ ℰ

ℰ ℰ
♣

If we are given a double category (ℰ , ℰ , 𝑠, 𝑡, 𝑒, ⋄), we will denote by a horizontal arrow a
morphism in ℰ , and by a vertical arrow an object of ℰ :

– 11 –

Section 3. Semantics of the Hanaba calculus

𝛼

𝐴

𝐵

where 𝑠(𝛼) = 𝐴 and 𝑡(𝛼) = 𝐵. Furthermore, we will say that a square as follows commutes

𝛼1

𝑓1 𝑓𝑛

𝛽1

𝛼𝑘 𝛽𝑚

𝑔1 𝑔𝑟

𝐴1 ⋯ 𝐵1

⋮ ⋮

𝐴𝑘+1 ⋯ 𝐵𝑚+1

if there exists a morphism

𝜑 : 𝛼𝑘 ⋄ ⋯ ⋄ 𝛼1 ⟶ 𝛽𝑚 ⋄ ⋯ ⋄ 𝛽1

such that

𝑠(𝜑) = 𝑓𝑛 ∘ ⋯ ∘ 𝑓1

𝑡(𝜑) = 𝑔𝑟 ∘ ⋯ ∘ 𝑔1

Definition 3.2.2 (Fibered double category)

A double category (ℰ , ℰ , 𝑠, 𝑡, 𝑒, ⋄) is said to be fibered if 𝑡 is a split cloven Grothendieck
fibration, the unit is a fibration morphism

𝑒 : idℰ ⟶ 𝑡

and so is the composition

⋄ : 𝑡 ∘ 𝜋2 ⟶ 𝑡
♣

Intuitively, in a fibered double category (ℰ , ℰ , 𝑠, 𝑡, 𝑒, ⋄), ℰ represents the category of contexts,
with morphism substitutions, and ℰ represents the category of types on top of a context. The
functor 𝑡 is the forgetful functor that, to each type associates the context on top of which it is
defined. 𝑠, on the other hand, is the context extension: if we have a type 𝐴 on top of a context
Γ, 𝑠(𝐴) is the context Γ.𝐴. The unit of the double category is the functor that, to each context
associates the unit type on top of that context, and ⋄ is the dependent sum.

𝑡 being a fibration makes the notion of a category of types above a context Γ meaningful, because
we can consider the fiber 𝑡−1

Γ . Furthermore, for each substitution 𝜌 : Δ → Γ, it can consider its
action 𝑡−1

𝜌 : 𝑡−1
Γ → 𝑡−1

Δ which actually performs the substitution on types and terms. Finally, the

– 12 –

Section 3. Semantics of the Hanaba calculus

fact that 𝑒 and ⋄ are fibration morphisms is to ensure the substitution of the unit type above
on fiber gives the unit type above the other fiber, and similarly that the substitution of the
dependent sum is the dependent sum of the substitution. This is exactly what the following
propositions will show:

Proposition 3.2.3

Let 𝑓 : 𝑋 → 𝑌 be a morphism in ℰ . We have a canonical isomorphism

𝑒∗
𝑓 : 𝑒𝑋 ≅ 𝑡−1

𝑓 (𝑒𝑌)
♠

Proof. 𝑓 is a cartesian morphism for the identity fibration, hence 𝑒𝑓 is itself cartesian for 𝑡.
Hence, there exist 𝑒∗

𝑓 and its inverse making the following diagram commute

𝑡

𝑒∗
𝑓

𝑒𝑓

𝑡

[𝑓]𝑒𝑌

𝑡

𝑓

𝑒𝑋

𝑡−1
𝑓 (𝑒𝑌) 𝑒𝑌

𝑋 𝑌

 □

Definition 3.2.4 (Morphism extension)

Given a morphism 𝑓 : 𝑋 → 𝑌 in ℰ and 𝑅 : 𝑡−1
𝑌 be above 𝑌 , the extension of 𝑓 by 𝑅 is

𝑓𝑅 ≔ 𝑠([𝑓]𝑅)
♣

Proposition 3.2.5

Given a morphism 𝑓 : 𝑋 → 𝑌 in ℰ , and 𝑅 : 𝑡−1
𝑌 and 𝑆 : 𝑡−1

𝑠(𝑅), the morphism ([𝑓]𝑡𝑅, [𝑓𝑅]𝑡
𝑆
)

is cartesian for 𝑡 ∘ 𝜋2.
♠

Proof. See Appendix G. □

Proposition 3.2.6

Given a morphism 𝑓 : 𝑋 → 𝑌 in ℰ , and 𝑅 : 𝑡−1
𝑌 and 𝑆 : 𝑡−1

𝑠(𝑅), we have a canonical
isomorphism

𝑅 ⋄∗
𝑓 𝑆 : 𝑡−1

𝑓 (𝑅) ⋄ 𝑡−1
𝑓𝑅(𝑆) ≅ 𝑡−1

𝑓 (𝑅 ⋄ 𝑆)
♠

Proof. Because ([𝑓]𝑡𝑅, [𝑓𝑅]𝑡
𝑆
) is cartesian, and because ⋄ is a fibration morphism, [𝑓]𝑡𝑅 ⋄ [𝑓𝑅]𝑡

𝑆
is cartesian. Hence, there exist unique maps making the following commute

– 13 –

Section 3. Semantics of the Hanaba calculus

𝑡

𝑅 ⋄∗
𝑓 𝑆

[𝑓]𝑡𝑅 ⋄ [𝑓𝑅]𝑡
𝑆

[𝑓]𝑅⋄𝑆

𝑡 𝑡

𝑓

𝑡−1
𝑓 (𝑅) ⋄ 𝑡−1

𝑓𝑅(𝑆)

𝑡−1
𝑓 (𝑅 ⋄ 𝑆) 𝑅 ⋄ 𝑆

𝑋 𝑌

 □

3.3. Foundations of Hanaba models
We will now proceed to defining a Hanaba model. This definition will span over the next few
sections, as we will enumerate all the data in this definition. A summary of this enumeration
can be found in Appendix E.

Suppose we have a fibered double category (1)

𝐹 𝜋

ℬ∗

ℬ ℬ

with unit (2)

⟨⟩ : ℬ → ℬ∗

and with multiplication (3)

−, − : ℬ∗ ×ℬ ℬ∗ ⟶ ℬ∗

as well as an other fibered double category (4)

𝑞 𝑝

ℰ

ℬ∗ ℬ∗

with unit (5)

1 : ℬ∗ → ℰ

and multiplication (6)

Σ : ℰ ×ℬ∗
ℰ ⟶ ℰ

– 14 –

Section 3. Semantics of the Hanaba calculus

Suppose we also have a L𝜆Mod-fibered fibration (7) 𝜐 : 𝒞 → ℬ. For Γ : ℬ, let us note 𝒞Γ ≔
𝜐−1

Γ and 𝑈Γ the universe of 𝒞Γ.

Let’s call ℬ the global context category, as its elements will be global contexts (ie. contexts that
we called Γ in the syntactic part). ℬ∗ is the pointed context category, ie. contexts that we called
Θ in the syntactic part. The name comes from the fact that, in the chain model, ℬ∗ will be
constructed as the category of pointed global contexts. Finally, let’s call ℰ the type category.

3.4. Global contexts ℬ
For Γ : ℬ, let us note Ctxt(Γ) the fiber 𝜋−1

Γ above Γ. For a context Θ : Ctxt(Γ), and a morphism
𝜌 : Γ′ → Γ, let

Θ{𝜌} ≔ 𝜋−1
𝜌 (Θ)

This defines a function

−{𝜌} : Ctxt(Γ) → Ctxt(Γ′)

which we call substitution action along 𝜌.

For Θ : Ctxt(Γ), let us note

Γ, Θ ≔ 𝐹(Θ)

We have purpusefully chosen this notation to be the same as the multiplication −, −, since
we have

Γ, (Θ1, Θ2) = (Γ, Θ1), Θ2

which we can therefore denote as

Γ, Θ1, Θ2

3.4.1. Global context projection
Suppose there is a natural transformation p : 𝐹 ⇒ 𝜋 (8) such that, for every context Γ : ℬ,
we have

p⟨⟩Γ
= idΓ

3.4.2. Global terms
For a context Γ : ℬ, and a pointed context Θ : Ctxt(Γ), a global term at Θ is a morphism 𝑡 :
⟨⟩Γ → Θ in Ctxt(Γ). We write Tm(Γ ⊨ Θ) for the set of global terms at Θ. Note that a global
term 𝑡 : Tm(Γ ⊨ Θ) induces a section of the global context projection. Indeed, we have

p⟨⟩Γ

𝐹(𝑡) 𝜋(𝑡)

pΘ

Γ, ⟨⟩Γ Γ

Γ, Θ Γ

Since 𝜋(𝑡) = idΓ, Γ, ⟨⟩Γ = Γ and p⟨⟩Γ
= idΓ, we have that the following diagram commutes

– 15 –

Section 3. Semantics of the Hanaba calculus

idΓ
𝐹(𝑡)

pΘ

Γ

Γ, Θ Γ

Let 𝜌 : Γ′ → Γ be a substitution, and 𝑡 : Tm(Γ ⊨ Θ). Let us note 𝑡{𝜌} ≔ 𝜋−1
𝜌 (𝑡) ∘ ⟨⟩∗

𝜌 : ⟨⟩Δ →
Θ{𝜌} in Ctxt(Γ′). This defines the substitution action along 𝜌:

−{𝜌} : Tm(Γ ⊨ Θ) → Tm(Γ′ ⊨ Θ{𝜌})

For Θ : Ctxt(Γ), suppose there is a term vΘ : Tm(Γ, Θ ⊨ Θ{pΘ}) (9) .

3.4.3. Global context extension
Let global contexts Γ1 and Γ2, and Θ : Ctxt(Γ2) be a pointed context. For any substitution
𝜌 : Γ1 → Γ2 and a term 𝑡 : Tm(Γ1 ⊨ Θ{𝜌}), there exists a substitution ⟨𝜌, 𝑡⟩ : Γ1 → Γ2, Θ (10)
such that

pΘ ∘ ⟨𝜌, 𝑡⟩ = 𝜌
vΘ{⟨𝜌, 𝑡⟩} = 𝑡
⟨𝜌, 𝑡⟩ ∘ 𝜌′ = ⟨𝜌 ∘ 𝜌′, 𝑡{𝜌′}⟩
⟨idΓ, vΘ⟩ = idΓ,Θ

3.5. Pointed contexts ℬ∗
For a global context Γ : ℬ, a pointed context Θ : Ctxt(Γ), let us note Ty(Γ ⊨ Θ) = 𝑝−1

Θ the
category of types above Γ and Θ. We will sometimes omit the Γ, and simply note it Ty(Θ). For
a type 𝐴 : Ty(Γ ⊨ Θ), let us write

Θ.𝐴 ≔ 𝑞(𝐴)

For a pointed substitution 𝜌 : Θ′ → Θ in Ctxt(Γ), and a type 𝐴 : Ty(Γ ⊨ Θ), let us define

𝐴{𝜌} ≔ 𝑝−1
𝜌 (𝐴)

This defines a map

−{𝜌} : Ty(Γ ⊨ Θ) ⟶ Ty(Γ ⊨ Θ′)

called the action along the substitution 𝜌.

Suppose there is a natural transformation p : 𝑞 ⇒ 𝑝 (11) such that, for every pointed context
Θ : ℬ∗, we have

p1Θ
= idΘ

3.5.1. Pointed terms
For a context Γ : ℬ, a pointed context Θ : Ctxt(Γ), and a type 𝐴 : Ty(Γ ⊨ Θ), a pointed term
of type 𝐴 is a morphism 𝑡 : 1Θ → 𝐴 in Ty(Γ ⊨ Θ). We write Tm(Γ ⊨ Θ ⊢ 𝐴) for the set of
such terms.

Let 𝜌 : Θ1 → Θ2 be a pointed substitution in Ctxt(Γ), and 𝑡 : Tm(Γ ⊨ Θ2 ⊢ 𝐴) be a term. Let
us note

– 16 –

Section 3. Semantics of the Hanaba calculus

𝑡{𝜌} ≔ 𝑝−1
𝜌 (𝑡) ∘ 1∗

𝜌 : 1Θ1
→ 𝐴{𝜌}

This defines the action along the substitution 𝜌:

−{𝜌} : Tm(Γ ⊨ Θ2 ⊢ 𝐴) ⟶ Tm(Γ ⊨ Θ1 ⊢ 𝐴{𝜌})

For Γ a global context, Θ : Ctxt(Γ) and 𝐴 : Ty(Γ ⊨ Θ), suppose there is a term v𝐴 : Tm(Γ ⊨
Θ ⊢ 𝐴) (12) .

Note that a pointed term 𝑡 : Tm(Γ ⊨ Θ ⊢ 𝐴) induces a section of the pointed context projection.
TODO

3.5.2. Pointed context extension
Let Γ be a global context, Θ1, Θ2 : Ctxt(Γ) be pointed contexts, and 𝐴 : Ty(Γ ⊨ Θ2) be a type.
For any pointed substitution 𝜌 : Θ1 → Θ2, and any term 𝑡 : Tm(Γ ⊨ Θ1 ⊢ 𝐴{𝜌}), there exists a
substitution ⟨𝜌, 𝑡⟩Γ : Θ1 → Θ2.𝐴 (13) such that

p𝐴 ∘ ⟨𝜌, 𝑡⟩Γ = 𝜌
v𝐴{⟨𝜌, 𝑡⟩Γ} = 𝑡
⟨𝜌, 𝑡⟩Γ ∘ 𝜌′ = ⟨𝜌 ∘ 𝜌′, 𝑡{𝜌′}⟩Γ

⟨idΘ, v𝐴⟩Γ = idΘ.𝐴

3.5.3. Linear structure
Assume that 𝑝 is a MonCat-fibered fibration, where MonCat is the category of symmetric
monoidal closed categories and monoidal closed functors. Suppose, furthermore, that the unit
of each fiber above Θ is exactly 1Θ, and that it is a final object in the fiber category.

Let us note ℰΓ the fiber of 𝜋 ∘ 𝑝 above Γ.

Consider the category ℰΓ↓ whose objects are those of ℰ, and morphisms are 𝜌 : 𝐴{𝜌} → 𝐴 for
𝜌 : Θ → Θ′ and 𝐴 : Ty(Θ′).

Suppose there is a shape functor 𝑆Γ : ℰΓ↓ → 𝒞Γ (14) that factors through 𝒮:

𝑆Γ

ℰΓ↓

𝒮 𝒞Γ

such that, for any substitution 𝜌, and any types 𝐴 and 𝐵, we have

𝑆Γ(𝜌 : 𝐴{𝜌} → 𝐴) ⊗ 𝑆Γ(𝜌 : 𝐵{𝜌} → 𝐵) = 𝑆Γ(𝜌 : (𝐴 ⊗ 𝐵){𝜌} → 𝐴 ⊗ 𝐵)

Furthermore, for any global context Γ, pointed context Θ : Ctxt(Γ), suppose there is a monoidal
closed functor ⦃−⦄Γ⊨Θ : Ty(Γ ⊨ Θ) → 𝒞Γ (15) such that, for every 𝐴 : Ty(Γ ⊨ Θ),

⦃𝐴⦄Γ⊨Θ = 𝑆Γ(𝐴)

Definition 3.5.1 (Linear terms)

Given two types Δ, 𝐴 : Ty(Γ ⊨ Θ), a linear term is a morphism 𝑡 : Δ → 𝐴 such that for
every pointed substitution 𝜌 : Θ′ → Θ in Ctxt(Γ), the following diagram commutes

– 17 –

Section 3. Semantics of the Hanaba calculus

𝑆Γ(𝜌)

⦃𝑡{𝜌}⦄

𝑆Γ(𝜌)

⦃𝑡⦄

⦃Δ{𝜌}⦄ ⦃𝐴{𝜌}⦄

⦃Δ⦄ ⦃𝐴⦄

Let us note Ty𝑙(Γ ⊨ Θ) the subcategory of Ty(Γ ⊨ Θ) where morphisms are linear terms.
♣

Lemma 3.5.2

Ty𝑙(Γ ⊨ Θ) is a sub-monoidal category of Ty(Γ ⊨ Θ).
♡

Proof. As Ty𝑙(Γ ⊨ Θ) contains every object of Ty(Γ ⊨ Θ), we just need to check that, given two
linear terms 𝑡𝑖 : Δ𝑖 → 𝐴𝑖 (𝑖 ∈ {1, 2}), their product 𝑡1 ⊗ 𝑡2 is still linear. Consider a pointed
substitution 𝜌 : Θ′ → Θ. Note that, because 𝑝 is a MonCat-fibered fibration, 𝑝−1

𝜌 is a monoidal
functor, hence

(𝑡1 ⊗ 𝑡2){𝜌} = 𝑡1{𝜌} ⊗ 𝑡2{𝜌}

and ⦃−⦄ is also a monoidal functor, so

⦃(𝑡1 ⊗ 𝑡2){𝜌}⦄ = ⦃𝑡1{𝜌}⦄ ⊗ ⦃𝑡2{𝜌}⦄
⦃𝑡1 ⊗ 𝑡2⦄ = ⦃𝑡1⦄ ⊗ ⦃𝑡2⦄

hence the following diagram commutes

𝑆Γ(𝜌) ⊗ 𝑆Γ(𝜌)

⦃𝑡1{𝜌}⦄ ⊗ ⦃𝑡2{𝜌}⦄

𝑆Γ(𝜌) ⊗ 𝑆Γ(𝜌)

⦃𝑡1⦄ ⊗ ⦃𝑡2⦄

⦃Δ1{𝜌}⦄ ⊗ ⦃Δ2{𝜌}⦄ ⦃𝐴1{𝜌}⦄ ⊗ ⦃𝐴2{𝜌}⦄

⦃Δ1⦄ ⊗ ⦃Δ2⦄ ⦃𝐴1⦄ ⊗ ⦃𝐴2⦄

 □

Definition 3.5.3 (Enriched linear context)

An enriched linear context over contexts Γ and Θ is a pair of types Δ, Δ : Ty(Γ ⊨ Θ) with
a epimorphism Δ → Δ and a term 𝛿 : Tm(Γ ⊨ Θ ⊢ Δ).

♣

Definition 3.5.4

For a global context Γ : ℬ, a pointed context Θ : Ctxt(Γ), an enriched context Δ : Ty(Γ ⊨
Θ) and a type 𝐴 : Ty(Γ ⊨ Θ), let us write Tm(Γ ⊨ Θ | Δ ⊢ 𝐴) for the set of linear terms
Δ → 𝐴.

♣

– 18 –

Section 3. Semantics of the Hanaba calculus

Let Ξ : Ty(Γ ⊨ Θ) be a context. There exists a unique map Ξ → 1Θ. Suppose it is an epimor-
phism. Thus, every context can be seen as an enriched context:

id1Θ

1Θ

Ξ 1Θ

Furthermore, if we have two enriched contexts (Δ1, Δ1, 𝜎1 : Δ1 → Δ1, 𝛿1 : 1Θ → Δ1) and
(Δ2, Δ2, 𝜎2 : Δ2 → Δ2, 𝛿2 : 2Θ → Δ2) over Θ, we can form their tensor product

𝜎1 ⊗ 𝜎2 𝛿1 ⊗ 𝛿2

Δ1 ⊗ Δ2

Δ1 ⊗ Δ2 1Θ

For this definition to be correct, we need to suppose additionally that the tensor product of
epimorphisms is an epimorphism.

For any Θ : ℬ∗ above a Γ, let us note 𝜈Θ : ⟨⟩Γ,Θ → Θ the following composition

vΘ

𝜈Θ{pΘ}

[pΘ]Θ

⟨⟩Γ,Θ

Θ{pΘ} Θ

We assume 𝜈Θ to be an isomorphism. Indeed, in the model, we distinguish between types which
are otherwise identical syntactically, that is, if we have a context Γ, Θ and a type 𝐴 above it
(that is, above ⟨⟩Γ,Θ), syntactically, it is the same as having a type above Θ, but semantically,
they live in different fibers. Hence, we need identify these copies in all the fibers.

Definition 3.5.5

Given a global context Γ : ℬ, a pointed context Θ : Ctxt(Γ), a pointed context Σ :
Ctxt(Γ, Θ), an enriched context Δ : Ty(Γ ⊨ Θ, Σ) (with enrichment Δ, 𝜎 : Δ → Δ and
𝛿 : 1Θ → Δ) and a context Ξ : Ty(Γ ⊨ Θ, Σ), a type 𝐴 : Ty(Γ ⊨ Θ, Σ), a linear term 𝑢 :
Tm(Γ ⊨ Θ, Σ | Δ ⊗ Ξ ⊢ 𝐴) and a linear term 𝑣 : Tm(Γ, Θ ⊨ Σ | Ξ{𝜈Θ, Σ} ⊢ 𝐴{𝜈Θ, Σ}).
We say that 𝑢 maps to 𝑣, noted 𝑢 ↦ 𝑣, if there exists a linear term 𝑡 : Δ ⊗ Ξ → 𝐴,
necessary unique, making the following diagram commute

– 19 –

Section 3. Semantics of the Hanaba calculus

𝑢

𝜎 ⊗ Ξ

[𝜈Θ, Σ]𝑝𝐴

𝑡

𝛿 ⊗ Ξ [𝜈Θ, Σ]𝑝Ξ

𝑣

Δ ⊗ Ξ 𝐴

𝐴{𝜈Θ, Σ}

Δ ⊗ Ξ Ξ Ξ{𝜈Θ, Σ}
♣

Given 𝑢 : Tm(Γ ⊨ Θ | Δ ⊢ 𝐴), and 𝑣 : Tm(Γ ⊨ Θ ⊢ 𝐴), we say that 𝑢 ↦ 𝑣 if there exists a 𝑡
(necessarily unique) such that

𝑢

𝑡

𝛿

𝑣

Δ 𝐴

Δ 1Θ

3.6. Semantic type formers
We have not formally defined semantic counterparts to every syntactic constructor, as well as
an interpretation for the Hanaba system into an Hanaba model, but a partial attempt can be
read at Appendix D.

– 20 –

Bibliography

Bibliography
[1] M. Hofmann, “Syntax and Semantics of Dependent Types,” in Semantics and Logics of

Computation, A. M. Pitts and P. Dybjer, Eds., in Publications of the Newton Institute.,
Cambridge University Press, 1997, pp. 79–130.

[2] P. Martin-Löf, “An Intuitionistic Theory of Types, Predicative Part,” in Logic Colloquium,
North Holland, 1975, pp. 73–118.

[3] M. Hofmann and T. Streicher, “The Groupoid Model Refutes Uniqueness of Identity
Proofs,” in Proceedings Ninth Annual IEEE Symposium on Logic in Computer Science,
1994, pp. 208–212. doi: 10.1109/LICS.1994.316071.

[4] M. Hofmann and T. Streicher, “The Groupoid Interpretation of Type Theory,” Twenty-
five years of constructive type theory (Venice, 1995), vol. 36. in Oxford Logic Guides, vol.
36. Oxford Univ. Press, New York, pp. 83–111, 1998.

[5] T. Coquand and T. Altenkirch, “Towards Higher Dimensional Type Theory,” 2011.

[6] The Univalent Foundations Program, Homotopy Type Theory: Univalent Foundations of
Mathematics. Institute for Advanced Study: https://homotopytypetheory.org/book, 2013.

[7] J.-Y. Girard, “Linear logic,” Theoretical Computer Science, vol. 50, no. 1, pp. 1–101, 1987,
doi: https://doi.org/10.1016/0304-3975(87)90045-4.

[8] C. McBride, “I Got Plenty o' Nuttin',” in A List of Successes That Can Change the World:
Essays Dedicated to Philip Wadler on the Occasion of His 60th Birthday, S. Lindley, C.
McBride, P. Trinder, and D. Sannella, Eds., Cham: Springer International Publishing,
2016, pp. 207–233. doi: 10.1007/978-3-319-30936-1_12.

[9] P. Fu, K. Kishida, and P. Selinger, “Linear Dependent Type Theory for Quantum
Programming Languages: Extended Abstract,” in Proceedings of the 35th Annual ACM/
IEEE Symposium on Logic in Computer Science, in LICS '20. Saarbrücken, Germany:
Association for Computing Machinery, 2020, pp. 440–453. doi: 10.1145/3373718.3394765.

[10] P.-A. Melliès and N. Zeilberger, “Functors are Type Refinement Systems,” in Proceedings
of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2015, Mumbai, India, January 15-17, 2015., 2015.

[11] N. Benton, G. Bierman, V. de Paiva, and M. Hyland, “A term calculus for Intuitionistic
Linear Logic,” in Typed Lambda Calculi and Applications, M. Bezem and J. F. Groote,
Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 1993, pp. 75–90.

[12] S. Awodey, “Natural models of homotopy type theory,” Mathematical Structures in
Computer Science, vol. 28, no. 2, pp. 241–286, 2018, doi: 10.1017/S0960129516000268.

[13] P.-A. Melliès and N. Rolland, “Comprehension and quotient structures in the language of
2-categories,” in Proceedings of the 4th International Conference on Formal Structures for
Computation and Deduction, 2020.

[14] D. Scott and H. Curry, Relating Theories of the Lambda-calculus: Dedicated to Professor
H. B. Curry on the Occasion of His 80th Birthday. 1974. [Online]. Available: https://
books.google.fr/books?id=PNonvwEACAAJ

[15] P.-A. Melliès and N. Zeilberger, “A bifibrational reconstruction of Lawvere's presheaf
hyperdoctrine,” in Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in
Computer Science, LICS 2016, New York, NY, USA, July 5-8, 2016, 2016.

– 21 –

https://doi.org/10.1109/LICS.1994.316071
https://doi.org/https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1007/978-3-319-30936-1_12
https://doi.org/10.1145/3373718.3394765
https://doi.org/10.1017/S0960129516000268
https://books.google.fr/books?id=PNonvwEACAAJ
https://books.google.fr/books?id=PNonvwEACAAJ

Bibliography

[16] N. Behr, P.-A. Melliès, and N. Zeilberger, “Convolution Products on Double Categories
and Categorification of Rule Algebras,” in Leibniz International Proceedings in Informatics
(LIPIcs), M. Gaboardi and F. van Raamsdonk, Eds., in 8th International Conference on
Formal Structures for Computation and Deduction (FSCD 2023), vol. 260. Rome, Italy:
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Jul. 2023, pp. 1–20. doi: 10.4230/
LIPIcs.FSCD.2023.17.

[17] A. Grothendieck and M. Raynaud, “Revêtements étales et groupe fondamental (SGA
1).” [Online]. Available: https://arxiv.org/abs/math/0206203

[18] T. Leinster, “fc-multicategories.” [Online]. Available: https://arxiv.org/abs/math/9903004

[19] G. S. H. Cruttwell and M. A. Shulman, “A unified framework for generalized multicate-
gories.” [Online]. Available: https://arxiv.org/abs/0907.2460

– 22 –

https://doi.org/10.4230/LIPIcs.FSCD.2023.17
https://doi.org/10.4230/LIPIcs.FSCD.2023.17
https://arxiv.org/abs/math/0206203
https://arxiv.org/abs/math/9903004
https://arxiv.org/abs/0907.2460

Appendix
Contents
A Grothendieck fibrations . 𝜔 + 1

A.1 First definitions and notations . 𝜔 + 1
A.2 Some properties of fibrations . 𝜔 + 3
A.3 Grothendieck construction . 𝜔 + 10

B Hanaba calculus . 𝜔 + 12
B.1 Terms . 𝜔 + 12
B.2 Rewriting rules . 𝜔 + 12

C Hanaba typing system . 𝜔 + 14
C.1 Context formation . 𝜔 + 14
C.2 Universe . 𝜔 + 14
C.3 Variables . 𝜔 + 14
C.4 Structural rules . 𝜔 + 14
C.5 Natural numbers . 𝜔 + 15
C.6 Singleton type . 𝜔 + 15
C.7 Identity type . 𝜔 + 15
C.8 Lollipop . 𝜔 + 16
C.9 Universal quantifier . 𝜔 + 16
C.10 Monoidal product . 𝜔 + 16
C.11 Existential quantifier . 𝜔 + 17
C.12 Bang modality . 𝜔 + 17
C.13 With . 𝜔 + 18
C.14 Coproduct . 𝜔 + 18
C.15 Unit . 𝜔 + 18

D Semantic type formers . 𝜔 + 20
D.1 Linear implication . 𝜔 + 20
D.2 Universal quantification . 𝜔 + 20
D.3 Existential quantification . 𝜔 + 20
D.4 Singleton type . 𝜔 + 21
D.5 Interpreting the syntax . 𝜔 + 21

E Summary of Hanaba model . 𝜔 + 23
F Chain model . 𝜔 + 24

F.1 Chain-like structures . 𝜔 + 24
F.2 The global context category . 𝜔 + 32
F.3 The pointed context category . 𝜔 + 38
F.4 Fibered double category structure . 𝜔 + 39
F.5 The type category . 𝜔 + 40

G Proof of Proposition 3.2.5 . 𝜔 + 43
H Proof of Theorem F.4.4 . 𝜔 + 45
I Proof of Theorem F.5.6 . 𝜔 + 48
J Proof of Theorem A.3.1 . 𝜔 + 49

J.1 Fiber functor . 𝜔 + 51
J.2 Grothendieck construction . 𝜔 + 65
J.3 The equivalence . 𝜔 + 71

– 𝜔 –

Appendix A Grothendieck fibrations

A Grothendieck fibrations
For this section, assume we have a functor 𝑝 : ℰ → ℬ.

A.1 First definitions and notations
For 𝑅 : ℰ and 𝑋 : ℬ, we say that 𝑅 refines 𝑋 if 𝑝(𝑅) = 𝑋, and we denote it by

𝑝

𝑅

𝑋

We can omit the 𝑝 if it is clear from context. Furthermore, we say the following square commutes

𝑓

𝑝 𝑝

𝑔

𝑅 𝑆

𝑋 𝑌

if 𝑝(𝑓) = 𝑔.

Definition A.1.1 (Cartesian morphism)

A morphism 𝛼 : 𝑅 → 𝑆 in ℰ is said to be cartesian if, for any morphism 𝛽 : 𝑇 → 𝑆 in ℰ,
and 𝑔 : 𝑝(𝑇) → 𝑝(𝑅) such that 𝑝(𝛽) = 𝑝(𝛼) ∘ 𝑔, there exists a unique 𝛾 : 𝑇 → 𝑅 making
the following diagram commute

𝑝

𝛾

𝛽

𝛼

𝑝𝑝(𝛽)
𝑔

𝑝𝑝

𝑝(𝛼)

𝑇

𝑅 𝑆

𝑝(𝑇)

𝑝(𝑅) 𝑝(𝑆)
♣

Definition A.1.2 (Grothendieck fibration)

𝑝 is a (Grothendieck) fibration if for every diagram of the shape

– 𝜔 + 1 –

Appendix A Grothendieck fibrations

𝑝

𝑓

𝑅

𝑋 𝑌

there exists an object 𝑝−1
𝑓 (𝑅) in ℰ and a cartesian morphism [𝑓]𝑝𝑅 : 𝑝−1

𝑓 (𝑅) → 𝑅 making
the following diagram commute

[𝑓]𝑝𝑅

𝑝 𝑝

𝑓

𝑝−1
𝑓 (𝑅) 𝑅

𝑋 𝑌
♣

Definition A.1.3 (Cloven fibration)

If 𝑝 is a fibration, 𝑝 equipped with a choice of such 𝑝−1
𝑓 (𝑅) and [𝑓]𝑝𝑅 for every 𝑓 is called

a cloven fibration.
♣

Definition A.1.4 (Split fibration)

A cloven fibration 𝑝 is said to be split if

𝑝−1
id𝑋

(𝑅) = 𝑅

[id𝑋]𝑝𝑅 = id𝑅

for every 𝑅 refining 𝑋.
♣

Definition A.1.5 (Fibration morphism)

Given two fibrations 𝑝 : ℰ → ℬ and 𝑞 : ℱ → ℬ, a fibration morphism 𝐹 : 𝑝 → 𝑞 is a functor
𝐹 : ℰ → ℱ making the following diagram commute

𝑝

𝐹

𝑞

ℰ ℱ

ℬ

and such that any cartesian morphism 𝛼 in ℰ is sent to a cartesian morphism 𝐹(𝛼) in ℱ.
♣

– 𝜔 + 2 –

Appendix A Grothendieck fibrations

A.2 Some properties of fibrations
Proposition A.2.1 (Folklore)

The pullback of a fibration by any functor is a fibration.
♠

Proof. Let 𝑝 : ℰ → ℬ be a fibration, and 𝑞 : 𝒞 → ℬ be a functor, and consider the following
pullback

𝜋1

𝜋2

𝑝

𝑞

𝒞 ×ℬ ℰ ℰ

𝒞 ℬ

We have to show that 𝜋1 is a fibration. Consider such a diagram

𝜋1

𝑓

(𝑌 , 𝑆)

𝑋 𝑌

We have that 𝑞(𝑌) = 𝑝(𝑆), so we can lift the following diagram

𝑝

[𝑞(𝑓)]𝑝𝑆

𝑝

𝑞(𝑓)

𝑝−1
𝑞(𝑓)(𝑆) 𝑆

𝑞(𝑋) 𝑞(𝑌)

therefore, the following diagram commutes

(𝑓, [𝑞(𝑓)]𝑝𝑆)

𝜋1 𝜋1

𝑓

(𝑋, 𝑝−1
𝑞(𝑓)(𝑆)) (𝑌 , 𝑆)

𝑋 𝑌

Let us show that this is indeed a cartesian morphism. Let (𝑔, 𝛼) : (𝑍, 𝑇) → (𝑌 , 𝑆) be a morphism
in 𝒞 ×ℬ ℰ and ℎ : 𝑍 → 𝑋 such that the following diagram commutes

– 𝜔 + 3 –

Appendix A Grothendieck fibrations

𝜋1

(𝑔, 𝛼)

(𝑓, [𝑞(𝑓)]𝑝𝑆)

𝜋1𝑔
ℎ

𝑓

𝜋1𝜋1

(𝑍, 𝑇)

(𝑋, 𝑝−1
𝑞(𝑓)(𝑆)) (𝑌 , 𝑆)

𝑍

𝑋 𝑌

In particular, the following diagram commutes

𝑝

𝛼

[𝑞(𝑓)]𝑝𝑆

𝑝𝑞(𝑔)
𝑞(ℎ)

𝑞(𝑓)

𝑝𝑝

𝑇

𝑝−1
𝑞(𝑓)(𝑆) 𝑆

𝑍

𝑋 𝑌

so there exists a unique 𝛽 : 𝑇 → 𝑝−1
𝑞(𝑓)(𝑆) making the following diagram commute

𝑝

𝛼

𝛽

[𝑞(𝑓)]𝑝𝑆

𝑝𝑞(𝑔)
𝑞(ℎ)

𝑞(𝑓)

𝑝𝑝

𝑇

𝑝−1
𝑞(𝑓)(𝑆) 𝑆

𝑍

𝑋 𝑌

and so the (ℎ, 𝛽) uniquely makes the following diagram commute

– 𝜔 + 4 –

Appendix A Grothendieck fibrations

𝜋1

(𝑔, 𝛼)

(ℎ, 𝛽)

(𝑓, [𝑞(𝑓)]𝑝𝑆)

𝜋1𝑔
ℎ

𝑓

𝜋1𝜋1

(𝑍, 𝑇)

(𝑋, 𝑝−1
𝑞(𝑓)(𝑆)) (𝑌 , 𝑆)

𝑍

𝑋 𝑌

 □

Proposition A.2.2 (Folklore)

Let 𝑝 : ℰ → ℬ and 𝑞 : ℬ → 𝒞 two fibrations. 𝑞 ∘ 𝑝 is a fibration.
♠

Proof. Let 𝑓 : 𝑋 → 𝑌 be a morphism in 𝒞, and 𝑅 such that 𝑞(𝑝(𝑅)) = 𝑌 .

𝑞 ∘ 𝑝

𝑓

𝑅

𝑋 𝑌

In particular, we are in the following situation

𝑝

𝑞

𝑓

𝑅

𝑝(𝑅)

𝑋 𝑌

We can lift 𝑓 one layer:

– 𝜔 + 5 –

Appendix A Grothendieck fibrations

𝑝

𝑞

[𝑓]𝑞𝑅

𝑞

𝑓

𝑅

𝑞−1
𝑓 (𝑝(𝑅)) 𝑝(𝑅)

𝑋 𝑌

and again

𝑝

[[𝑓]𝑞𝑝(𝑅)]
𝑝

𝑅

𝑝

𝑞

[𝑓]𝑞𝑝(𝑅)

𝑞

𝑓

𝑝−1
[𝑓]𝑞𝑝(𝑅)

(𝑅) 𝑅

𝑞−1
𝑓 (𝑝(𝑅)) 𝑝(𝑅)

𝑋 𝑌

 □

Proposition A.2.3 (Folklore)

Let 𝒞 be a category. id𝒞 is a fibration.
♠

Proof. Consider a morphism 𝑓 : 𝑋 → 𝑌 . The following diagram trivially commutes

id𝒞

𝑓

id𝒞

𝑓

𝑋 𝑌

𝑋 𝑌

Let us check that 𝑓 is a cartesian morphism. Let 𝑔 : 𝑍 → 𝑌 be a morphism, and ℎ : 𝑍 → 𝑋
such that 𝑔 = 𝑓 ∘ ℎ. Then ℎ is the unique morphism making the following diagram commute

– 𝜔 + 6 –

Appendix A Grothendieck fibrations

𝑝

𝑔

ℎ

𝑓

𝑝𝑔
ℎ

𝑓

𝑍

𝑋 𝑌

𝑍

𝑋 𝑌

𝑝𝑝

 □

Proposition A.2.4 (Folklore)

Consider a family (𝑝𝑖)𝑖:𝐼 of fibrations 𝑝𝑖 : ℰ𝑖 → ℬ. Its coproduct

[𝑝𝑖]𝑖:𝐼 : ∐
𝑖:𝐼

ℰ𝑖 ⟶ ℬ

is a fibration.
♠

Proof. Consider the following situation

[𝑝𝑖]𝑖:𝐼

𝑓

(𝑖, 𝑆)

𝑋 𝑌

for a given 𝑖 : 𝐼 and 𝑆 : ℰ𝑖. We can lift 𝑓 in ℰ𝑖:

𝑝𝑖

[𝑓]𝑝𝑖
𝑆

𝑝𝑖

𝑓

(𝑝𝑖)
−1
𝑓 (𝑆) 𝑆

𝑋 𝑌

and therefore, in ∐𝑖:𝐼 ℰ𝑖

[𝑝𝑖]𝑖:𝐼

[𝑓]𝑝𝑖
𝑆

[𝑝𝑖]𝑖:𝐼

𝑓

(𝑖, (𝑝𝑖)
−1
𝑓 (𝑆)) (𝑖, 𝑆)

𝑋 𝑌

– 𝜔 + 7 –

Appendix A Grothendieck fibrations

Let us show that this morphism is cartesian. Consider a ℎ̂ : (𝑗, 𝑇) → (𝑖, (𝑝𝑖)
−1
𝑓 (𝑆)) making the

following diagram commute

[𝑝𝑖]𝑖:𝐼

𝑔

ℎ̂

[𝑓]𝑝𝑖
𝑆

[𝑝𝑖]𝑖:𝐼[𝑝𝑖]𝑖:𝐼(𝑔)
ℎ

𝑓

(𝑗, 𝑇)

(𝑖, (𝑝𝑖)
−1
𝑓 (𝑆)) (𝑖, 𝑆)

𝑝𝑗(𝑇)

𝑋 𝑌

[𝑝𝑖]𝑖:𝐼[𝑝𝑖]𝑖:𝐼

Then we must have 𝑖 = 𝑗 and this is exactly equivalent to the commutation of the following
diagram

𝑝𝑖

𝑔

ℎ̂

[𝑓]𝑝𝑖
𝑆

𝑝𝑖𝑝𝑖(𝑔)
ℎ

𝑓

𝑇

(𝑝𝑖)
−1
𝑓 (𝑆) 𝑆

𝑝𝑖(𝑇)

𝑋 𝑌

𝑝𝑖𝑝𝑖

by cartesianity of [𝑓]𝑝𝑖
𝑆 , there is exactly one such ℎ̂. □

Proposition A.2.5 (Folklore?)

Let 𝐹 : ℬ → 𝒟 and 𝐺 : 𝒞 → 𝒟 be functors. Consider their glueing

𝜋1 𝜋2

𝐹 ↓ 𝐺

ℬ 𝒞

𝜋1 is a fibration.
♠

Proof. Let 𝑓 : 𝑋 → 𝑌 be a morphism in ℬ, and let (𝑌 , 𝑅, 𝑔 : 𝐹 (𝑌) → 𝐺(𝑅)) be an object in
𝐹 ↓ 𝐺, such that we are in the following situation

– 𝜔 + 8 –

Appendix A Grothendieck fibrations

𝜋1

𝑓

(𝑌 , 𝑅, 𝑔)

𝑋 𝑌

Note that 𝑔 ∘ 𝐹(𝑓) : 𝐹 (𝑋) → 𝐺(𝑅), and that the following diagram commutes

𝑔 ∘ 𝐹(𝑓)

𝐹(𝑓) 𝐺(id𝑅)

𝑔

𝐹(𝑋) 𝐺(𝑅)

𝐹(𝑌) 𝐺(𝑅)

Hence the following diagram commutes

(𝑓, id𝑅)

𝜋1 𝜋1

𝑓

(𝑋, 𝑅, 𝑔 ∘ 𝐹(𝑓)) (𝑌 , 𝑅, 𝑔)

𝑋 𝑌

Let us prove that (𝑓, id𝑅) is cartesian. Suppose we have a (𝛼, 𝛽) : (𝑍, 𝑆, 𝛾 : 𝐹(𝑍) → 𝐺(𝑆)) as
well as an ℎ : 𝑍 → 𝑋 making the following diagram commute

(𝛼, 𝛽)

𝜋1

(𝑓, id𝑅)

𝜋1

ℎ
𝛼

𝜋1𝜋1

𝑓

(𝑍, 𝑆, 𝛾)

(𝑋, 𝑅, 𝑔 ∘ 𝐹(𝑓)) (𝑌 , 𝑅, 𝑔)

𝑍

𝑋 𝑌

Suppose there is a ℎ̂ : (𝑍, 𝑆, 𝛾) → (𝑋, 𝑅, 𝑔 ∘ 𝐹(𝑓)) making the following diagram commute

– 𝜔 + 9 –

Appendix A Grothendieck fibrations

ℎ̂

(𝛼, 𝛽)

𝜋1

(𝑓, id𝑅)

𝜋1

ℎ
𝛼

𝜋1𝜋1

𝑓

(𝑍, 𝑆, 𝛾)

(𝑋, 𝑅, 𝑔 ∘ 𝐹(𝑓)) (𝑌 , 𝑅, 𝑔)

𝑍

𝑋 𝑌

Then in particular we must have ℎ̂ = (ℎ, 𝛽), so it is unique. Let us check that this indeed forms
a morphism (𝑍, 𝑆, 𝛾) → (𝑋, 𝑅, 𝑔 ∘ 𝐹(𝑓)), that is, that the following diagram commutes

𝛾

𝐹(ℎ) 𝐺(𝛽)

𝑔 ∘ 𝐹(𝑓)

𝐹(𝑍) 𝐺(𝑆)

𝐹(𝑋) 𝐺(𝑅)

It does, as we can decompose it as follows

𝛾

𝐹(𝛼)

𝐹(ℎ)

𝐺(𝛽)

𝐹(𝑓)

𝑔

𝐹(𝑍) 𝐺(𝑆)

𝐹(𝑋)

𝐹(𝑌) 𝐺(𝑅)

The left triangle commutes by assumption, and the square commutes because (𝛼, 𝛽) is a
morphism (𝑍, 𝑆, 𝛾) → (𝑌 , 𝑅, 𝑔) □

A.3 Grothendieck construction
Theorem A.3.1 (Grothendieck construction [17])

The category of fibrations on a base category ℬ and fibration morphisms is equivalent to
the category of pseudo Cat-valued presheaves

ℬop ⟶ Cat

For a fibration 𝑝 over ℬ, we note 𝑝−1 its corresponding pseudo-functor.
♡

– 𝜔 + 10 –

Appendix A Grothendieck fibrations

Proof. See Appendix J for a proof. □

Definition A.3.2 (𝒞-fibered fibration)

Let 𝒞 be a category, and 𝑞 : 𝒞 → Cat a pseudo-functor. 𝑝 : ℰ → ℬ is a 𝒞-fibered fibration
if it is a fibration, and if 𝑝−1 factors as such

𝑝−1

𝑞

ℬ

𝒞 Cat
♣

– 𝜔 + 11 –

Appendix B Hanaba calculus

B Hanaba calculus
B.1 Terms

𝑡 ⩴ 𝑥
| ℕ | 0 | S | 𝑅ℕ

| 𝑡 ⊸ 𝑡 | 𝜆𝑥.𝑡 | 𝑡𝑡
| ∀𝑥:𝑡𝑡 | Λ𝑥.𝑡 | 𝑡@𝑡
| 𝑡 ⊗ 𝑡 | (𝑡, 𝑡) | let (𝑥, 𝑥) = 𝑡 in 𝑡
| ∃𝑥:𝑡𝑡 | ⟨𝑡, 𝑡⟩ | let ⟨𝑥, 𝑥⟩ = 𝑡 in 𝑡
| {𝑡}𝑡 | loop 𝑡 | let loop 𝑥 = 𝑡 in 𝑡 | let 𝑥 = lift 𝑥 in 𝑡
| 𝑡 =𝑡 𝑡 | refl | J
| !𝑡 | let* 𝑥 = 𝑡 in … let* 𝑥 = 𝑡 in box 𝑡 | unbox 𝑡 | diag 𝑡 | drop 𝑡; 𝑡
| 𝑡&𝑡 | [𝑡, 𝑡] | 𝜋1 | 𝜋2

| 𝑡 ⊕ 𝑡 | 𝜄1 | 𝜄2 | R⊕

| 1 | ∗ | 𝑡; 𝑡
| Type

B.2 Rewriting rules
⊸-𝛽

(𝜆𝑥.𝑡)𝑢 ⟶ 𝑡[𝑥 ↦ 𝑢]
ℕ-𝛽-zero

𝑅ℕ(𝑃 , 𝑢0, 𝑢succ, 0) ⟶ 𝑢0

∀-𝛽
(Λ𝑥.𝑡)@𝑢 ⟶ 𝑡

ℕ-𝛽-succ
𝑅ℕ(𝑃 , 𝑢0, 𝑢succ, S𝑛) ⟶ 𝑢succ(𝑛, 𝑅ℕ(𝑃 , 𝑢0, 𝑢succ, 𝑛))

⊗-𝛽
let (𝑥, 𝑦) = (𝑢, 𝑣) in 𝑡 ⟶ 𝑡[𝑥 ↦ 𝑢, 𝑦 ↦ 𝑣]

∃-𝛽
let ⟨𝑥, 𝑦⟩ = ⟨𝑢, 𝑣⟩ in 𝑡 ⟶ 𝑡[𝑦 ↦ 𝑣]

{}-𝛽
let loop 𝑥 = loop 𝑢 in 𝑣 ⟶ 𝑣[𝑥 ↦ 𝑢]

lift-𝛽
let 𝑥 = lift 𝑢 in 𝑣 ⟶ 𝑣

=-𝛽
J(𝑇 , 𝑃 , 𝑡, (refl(𝑇 , 𝑢, 𝑣))) ⟶ 𝑡𝑢

!-𝛽
unbox (let* 𝑥𝑖 = 𝑒𝑖 in box 𝑡) ⟶ 𝑡[𝑥𝑖 ↦ 𝑒𝑖]

!-diag
diag (let* 𝑥1 = 𝑒1 in … let* 𝑥𝑛 = 𝑒𝑛 in box 𝑡) ⟶ 𝑡̂

&-𝛽-1
𝜋1[𝑢, 𝑣] ⟶ 𝑢

!-drop
drop (let* 𝑥𝑖 = 𝑒𝑖 in box 𝑡); 𝑢 ⟶ drop 𝑒1; …; drop 𝑒𝑛; 𝑢

&-𝛽-2
𝜋2[𝑢, 𝑣] ⟶ 𝑣

⊗-𝛽-1
R⊕(𝑃 , 𝜄1@𝐴@𝐵𝑣, 𝑢1, 𝑢2) ⟶ 𝑢1𝑣

⊗-𝛽-2
R⊕(𝑃 , 𝜄2@𝐴@𝐵𝑣, 𝑢1, 𝑢2) ⟶ 𝑢2𝑣

1-𝛽
∗; 𝑢 ⟶ 𝑢

let* 𝑥1 = 𝑒1 in
…
let* 𝑥𝑛 = 𝑒𝑛 in
𝑡

⟶ let* 𝑥1 = 𝑒1 in
…
let* 𝑥𝑖−1𝑒 = 𝑒𝑖−1 in
let* 𝑥𝑖+1 = 𝑒𝑖+1 in
…
let* 𝑥𝑛 = 𝑒𝑛 in
𝑡[𝑥𝑖 ↦ 𝑒𝑖]

– 𝜔 + 12 –

Appendix B Hanaba calculus

where

𝑡̂ = let (𝑥′
1, 𝑥″

1) = diag 𝑒1 in
…
let (𝑥′

𝑛, 𝑥″
𝑛) = diag 𝑒𝑛 in

(let* 𝑥1 = 𝑥′
1 in … let* 𝑥𝑛 = 𝑥′

𝑛 in box 𝑡, let* 𝑥1 = 𝑥″
1 in … let* 𝑥𝑛 = 𝑥″

𝑛 in box 𝑡)

– 𝜔 + 13 –

Appendix C Hanaba typing system

C Hanaba typing system
We note

Π𝑎:𝐴𝐵 ≔ ∀𝑎:𝐴{𝑎}𝐴 ⊸ 𝐵
Σ𝑎:𝐴𝐵 ≔ ∃𝑎:𝐴{𝑎}𝐴&𝐵

C.1 Context formation
⊢ Γ ctxt Ctxt-L-empty

Γ ⊢ ⋄ ctxt
Ctxt-NL-empty

⊢ ⋄ ctxt

Γ ⊢ Δ ctxt Γ ⊢ 𝐴 type Ctxt-L-cons
Γ ⊢ Δ, 𝑥 : 𝐴 ctxt

Γ ⊢ Δ ctxt Γ ⊨ ⋄ | ⋄ ⊢ 𝑦 : 𝐴 Ctxt-L-econs
Γ ⊢ Δ, 𝑥 ↦ 𝑦 : 𝐴 ctxt

⊢ Γ ctxt Γ ⊢ 𝐴 type Ctxt-NL-cons
⊢ Γ, 𝑥 : 𝐴 ctxt

C.2 Universe
Type-F

Γ ⊢ Type type
Γ, Θ ⊢ 𝐴 type Type-I

Γ ⊨ Θ | ⋄ ⊢ 𝐴 : Type

Γ, Θ ⊢ 𝐴 ≡ 𝐵 type Type-≡
Γ ⊨ Θ | ⋄ ⊢ 𝐴 ≡ 𝐵 : Type

Type-↦
Γ ⊨ Θ | Σ | ⋄ | ⋄ ⊢ Type ↦ Type : Type

C.3 Variables
𝑥 : 𝐴 ∈ Γ ⊢ Γ, Θ ctxt Ax-NL

Γ ⊨ Θ | ⋄ ⊢ 𝑥 : 𝐴
Γ, Θ ⊢ 𝑥 : 𝐴 ctxt Ax-L

Γ ⊨ Θ | 𝑥 : 𝐴 ⊢ 𝑥 : 𝐴

Γ, Θ ⊢ 𝑥 ↦ 𝑢 : 𝐴 ctxt Ax-L’
Γ ⊨ Θ | 𝑥 ↦ 𝑢 : 𝐴 ⊢ 𝑥 : 𝐴

𝑥 : 𝐴 ∈ Γ Γ, Θ, Σ ⊢ 𝐴 type AX-↦-NL
Γ ⊨ Θ | Σ | ⋄ | ⋄ ⊢ 𝑥 ↦ 𝑥 : 𝐴

Γ, Θ, Σ ⊢ 𝑥 : 𝐴 ctxt Ax-↦-L
Γ ⊨ Θ | Σ | ⋄ | 𝑥 : 𝐴 ⊢ 𝑥 ↦ 𝑥 : 𝐴

Γ, Θ, Σ ⊢ 𝑥 ↦ 𝑢 : 𝐴 ctxt Ax-↦-L’
Γ ⊨ Θ | Σ | 𝑥 ↦ 𝑢 : 𝐴 | ⋄ ⊢ 𝑥 ↦ 𝑢 : 𝐴

C.4 Structural rules
Γ ⊨ Θ | Δ ⊢ 𝑢 : 𝐴 Γ, Θ | ⋄ | ⋄ ⊢ 𝐴 ≡ 𝐵 : Type ≡-Cast-L

Γ ⊨ Θ | Δ ⊢ 𝑢 : 𝐵

𝑢 ⟶ 𝑣 Γ ⊨ Θ | Δ ⊢ 𝑢 : 𝐴 ≡-𝛽
Γ ⊨ Θ | Δ ⊢ 𝑢 ≡ 𝑣 : 𝐴

Γ ⊨ Θ | Δ ⊢ 𝑢 ≡ 𝑣 : 𝐴
Γ ⊨ Θ | Δ ⊢ 𝑣 ≡ 𝑡 : 𝐴 ≡-Trans
Γ ⊨ Θ | Δ ⊢ 𝑢 ≡ 𝑡 : 𝐴

Γ ⊨ Θ | Δ ⊢ 𝑢 : 𝐴 ≡-Refl
Γ ⊨ Θ | Δ ⊢ 𝑢 ≡ 𝑢 : 𝐴

Γ ⊨ Θ | Δ ⊢ 𝑣 ≡ 𝑢 : 𝐴 ≡-Symm
Γ ⊨ Θ | Δ ⊢ 𝑢 ≡ 𝑣 : 𝐴

Γ ⊢ 𝐴 ≡ 𝐵 type
Γ ⊢ 𝐵 ≡ 𝐶 type ≡-Trans-type
Γ ⊢ 𝐴 ≡ 𝐶 type

Γ ⊢ 𝐴 type ≡-Refl-type
Γ ⊢ 𝐴 ≡ 𝐴 type

Γ ⊢ 𝐵 ≡ 𝐴 type ≡-Symm-type
Γ ⊢ 𝐴 ≡ 𝐵 type

↦-Ax
Γ ⊨ Θ | Σ | 𝑥 ↦ 𝑦 : 𝐴 | ⋄ ⊢ 𝑥 ↦ 𝑦 : 𝐴

– 𝜔 + 14 –

Appendix C Hanaba typing system

C.5 Natural numbers
ℕ-F

Γ ⊢ ℕ type
ℕ-↦

Γ ⊨ Θ | Σ | ⋄ | ⋄ ⊢ ℕ ↦ ℕ : Type

ℕ-I-zero
Γ ⊨ Θ | ⋄ ⊢ 0 : ℕ

ℕ-I-zero-↦
Γ ⊨ Θ | Σ | ⋄ | ⋄ ⊢ 0 ↦ 0 : ℕ

ℕ-I-succ
Γ ⊨ Θ | ⋄ ⊢ succ : ℕ ⊸ ℕ

ℕ-I-succ-↦
Γ ⊨ Θ | Σ | ⋄ | ⋄ ⊢ succ ↦ succ : ℕ ⊸ ℕ

ℕ-E
Γ ⊨ Θ | ⋄ ⊢ 𝑅ℕ : ∀𝑃:∀𝑛:ℕ typeΠ𝑧:𝑃(0)∀𝑠:∀𝑛:ℕ𝑃(𝑛)⊸𝑃(succ 𝑛)!{𝑠} ⊸ Π𝑛:ℕ𝑃(𝑛)

ℕ-E-↦
Γ ⊨ Θ | Σ | ⋄ | ⋄ ⊢ 𝑅ℕ ↦ 𝑅ℕ : ∀𝑃:∀𝑛:ℕ typeΠ𝑧:𝑃(0)∀𝑠:∀𝑛:ℕ𝑃(𝑛)⊸𝑃(succ 𝑛)!{𝑠} ⊸ Π𝑛:ℕ𝑃(𝑛)

C.6 Singleton type

Γ ⊨ ⋄ | ⋄ ⊢ 𝑢 : 𝐴 {}-F
Γ ⊢ {𝑢}𝐴 type

Γ ⊨ Θ | Δ ⊢ 𝑎 ≡ 𝑏 : 𝐴
Γ, Θ | ⋄ | ⋄ ⊢ 𝐴 ≡ 𝐵 : Type {}-≡

Γ ⊨ Θ | Δ ⊢ {𝑎}𝐴 ≡ {𝑏}𝐵 : Type

Γ ⊨ Θ | ⋄ | Δ | ⋄ ⊢ 𝑡 ↦ 𝑎 : 𝐴 {}-I
Γ ⊨ Θ | Δ ⊢ loop 𝑡 : {𝑎}𝐴

Γ ⊨ Θ | Δ ⊢ 𝑢 ≡ 𝑣 : 𝐴
Γ ⊨ Θ | ⋄ | Δ | ⋄ ⊢ 𝑢 ↦ 𝑎 : 𝐴 {}-I-≡

Γ ⊨ Θ | Δ ⊢ loop 𝑢 ≡ loop 𝑣 : {𝑎}𝐴

Γ ⊨ Θ | Σ | Δ | ⋄ ⊢ 𝑢 ↦ 𝑣 : 𝐴 Γ ⊨ Θ, Σ | Δ ⊢ 𝑢 ↦ 𝑎 : 𝐴 {}-I-↦
Γ ⊨ Θ | Σ | Δ | ⋄ ⊢ loop 𝑢 ↦ loop 𝑣 : {𝑎}𝐴

Γ ⊨ Θ | Δ2, 𝑥 ↦ 𝑎 : 𝐴 ⊢ 𝑣 : 𝐵 Γ ⊨ Θ | Δ1 ⊢ 𝑢 : {𝑎}𝐴 {}-E-L
Γ ⊨ Θ | Δ1, Δ2 ⊢ let loop 𝑥 = 𝑢 in 𝑣 : 𝐵

Γ ⊨ Θ | Δ1 ⊢ 𝑢 ≡ 𝑢′ : {𝑎}𝐴 Γ ⊨ Θ | Δ2, 𝑥 ↦ 𝑎 : 𝐴 ⊢ 𝑣 ≡ 𝑣′ : 𝐵 {}-E-L-≡
Γ ⊨ Θ | Δ1, Δ2 ⊢ let loop 𝑥 = 𝑢 in 𝑣 ≡ let loop 𝑥 = 𝑢′ in 𝑣′ : 𝐵

Γ ⊨ Θ | Σ | Δ1 | Ξ1 ⊢ 𝑢 : {𝑎}𝐴 Γ ⊨ Θ | Σ | Δ2, 𝑥 ↦ 𝑎 : 𝐴 | Ξ2 ⊢ 𝑣 ↦ 𝑣′

Γ ⊨ Θ | Σ | Δ1, Δ2 | Ξ1, Ξ2 ⊢ let loop 𝑥 = 𝑢 in 𝑣 ↦ 𝑣′

Γ ⊨ Θ | Σ | Δ1, Ξ1 ⊢ 𝑢 ↦ 𝑢′ : {𝑎}𝐴
Γ ⊨ Θ | Σ | Δ2, 𝑥 ↦ 𝑎 : 𝐴 | Ξ2 ⊢ 𝑣 ↦ 𝑣′[𝑥 ↦ 𝑎] : 𝐵 {}-E-↦

Γ ⊨ Θ | Σ | Δ1, Δ2 | Ξ1, Ξ2 ⊢ let loop 𝑥 = 𝑢 in 𝑣 ↦ let loop 𝑥 = 𝑢′ in 𝑣′ : 𝐵

Γ ⊨ Θ, 𝑥 : 𝐶 | Δ1, 𝑦 ↦ 𝑥 : 𝐶, Δ2 ⊢ 𝑡 : 𝐴 Lift
Γ ⊨ Θ | Δ1, 𝑦 : 𝐶, Δ2 ⊢ let 𝑥 = lift 𝑦 in 𝑡 : 𝐴

Lift-≡
Γ ⊨ Δ ⊢

Γ ⊨ Θ, 𝑦 : 𝐵 | Σ | Δ, 𝑥 ↦ 𝑦 : 𝐵 | Ξ1, Ξ2 ⊢ 𝑢 ↦ 𝑣[𝑥 ↦ 𝑦] : 𝐴 Lift-↦-1
Γ ⊨ Θ | Σ | Δ | Ξ1, 𝑥 : 𝐵, Ξ2 ⊢ let 𝑦 = lift 𝑥 in 𝑢 ↦ let 𝑦 = lift 𝑥 in 𝑣 : 𝐴

Lift-↦-2
Γ ⊨ Θ | Σ | Δ1, 𝑥 : 𝐵, Δ2 | Ξ ⊢ let 𝑦 = lift 𝑥 in 𝑢 ↦ let 𝑦 = lift? in 𝑣 : 𝐴

C.7 Identity type

Γ ⊨ ⋄ | ⋄ ⊢ 𝑢 : 𝐴 Γ ⊨ ⋄ | ⋄ ⊢ 𝑣 : 𝐴 Id-F
Γ ⊢ 𝑢 =𝐴 𝑣 type

Γ ⊢ 𝐴 ≡ 𝐴′ type Γ ⊨ ⋄ | ⋄ ⊢ 𝑢 ≡ 𝑢′ : 𝐴
Γ ⊨ ⋄ | ⋄ ⊢ 𝑣 ≡ 𝑣′ : 𝐴 Id-≡

Γ ⊢ 𝑢 =𝐴 𝑣 ≡ 𝑢′ =𝐴′ 𝑣′ type

– 𝜔 + 15 –

Appendix C Hanaba typing system

Id-I
Γ ⊨ Θ | ⋄ ⊢ refl : Π𝑎:𝐴𝑎 =𝐴 𝑎

Id-I-↦
Γ ⊨ Θ | Σ | ⋄ | ⋄ ⊢ refl ↦ refl : Π𝑎:𝐴𝑎 =𝐴 𝑎

Id-E
Γ ⊨ Θ | ⋄ ⊢ 𝐽 : ∀𝐴: Type∀𝑃:∀𝑎:𝐴∀𝑏:𝐴∀𝑒:𝑎=𝐴𝑏 type(Π𝑥:𝐴𝑃(𝑥, 𝑥, refl(𝐴, 𝑥, 𝑥))) ⊸ ∀𝑎:𝐴∀𝑏:𝐴Π𝑒:𝑎=𝐴𝑏𝑃(𝑎, 𝑏, 𝑒)

Id-E-↦
Γ ⊨ Θ | Σ | ⋄ | ⋄ ⊢ 𝐽 ↦ 𝐽 : ∀𝐴: Type∀𝑃:∀𝑎:𝐴∀𝑏:𝐴∀𝑒:𝑎=𝐴𝑏 type(Π𝑥:𝐴𝑃(𝑥, 𝑥, refl(𝐴, 𝑥, 𝑥))) ⊸ ∀𝑎:𝐴∀𝑏:𝐴Π𝑒:𝑎=𝐴𝑏𝑃(𝑎, 𝑏, 𝑒)

C.8 Lollipop
Γ ⊢ 𝐴 type Γ ⊢ 𝐵 type ⊸-F

Γ ⊢ 𝐴 ⊸ 𝐵 type
Γ ⊢ 𝐴 ≡ 𝐴′ type Γ ⊢ 𝐵 ≡ 𝐵′ type ⊸-≡

Γ ⊢ 𝐴 ⊸ 𝐵 ≡ 𝐴′ ⊸ 𝐵′ type

Γ ⊨ Θ | Δ, 𝑥 : 𝐴 ⊢ 𝑡 : 𝐵 ⊸-I
Γ ⊨ Θ | Δ ⊢ 𝜆𝑥.𝑡 : 𝐴 ⊸ 𝐵

Γ ⊨ Δ, 𝑥 : 𝐴 ⊢ 𝑢 ≡ 𝑣 : 𝐵 ⊸-I-≡
Γ ⊨ Δ ⊢ (𝜆𝑥.𝑢) ≡ (𝜆𝑥.𝑣) : 𝐴 ⊸ 𝐵

Γ ⊨ Θ | Σ | Δ | Ξ, 𝑥 : 𝐴 ⊢ 𝑢 ↦ 𝑣 : 𝐵 ⊸-I-↦
Γ ⊨ Θ | Σ | Δ | Ξ ⊢ 𝜆𝑥.𝑢 ↦ 𝜆𝑦.𝑣 : 𝐴 ⊸ 𝐵

Γ ⊨ Δ1 ⊢ 𝑡 : 𝐴 ⊸ 𝐵 Γ ⊨ Δ2 ⊢ 𝑢 : 𝐴 ⊸-E
Γ ⊨ Δ1, Δ2 ⊢ 𝑡𝑢 : 𝐵

Γ ⊨ Δ1 ⊢ 𝑢 ≡ 𝑢′ : 𝐴 ⊸ 𝐵
Γ ⊨ Δ2 ⊢ 𝑣 ≡ 𝑣′ : 𝐴 ⊸-E-≡

Γ ⊨ Δ1, Δ2 ⊢ 𝑢𝑣 ≡ 𝑢′𝑣′ : 𝐵

Γ ⊨ Θ | Σ | Δ1 | Ξ1 ⊢ 𝑢 ↦ 𝑢′ : 𝐴 ⊸ 𝐵
Γ ⊨ Θ | Σ | Δ2 | Ξ2 ⊢ 𝑣 ↦ 𝑣′ : 𝐴 ⊸-E-↦

Γ ⊨ Θ | Σ | Δ1, Δ2 | Ξ1, Ξ2 ⊢ 𝑢𝑣 ↦ 𝑢′𝑣′ : 𝐵

C.9 Universal quantifier

Γ ⊢ 𝐴 type Γ, 𝑎 : 𝐴 ⊢ 𝐵 type ∀-F
Γ ⊢ ∀𝑎:𝐴𝐵 type

Γ ⊢ 𝐴 ≡ 𝐴′ type
Γ, 𝑎 : 𝐴 ⊢ 𝐵 ≡ 𝐵′ type ∀-≡

Γ ⊢ ∀𝑎:𝐴𝐵 ≡ ∀𝑎:𝐴′𝐵′ type

Γ ⊨ Θ, 𝑥 : 𝐴 | Δ ⊢ 𝑡 : 𝐵 ∀-I
Γ ⊨ Θ | Δ ⊢ Λ𝑥.𝑡 : ∀𝑥:𝐴𝐵

Γ ⊨ Θ, 𝑥 : 𝐴 | Δ ⊢ 𝑢 ≡ 𝑣 : 𝐵 ∀-I-≡
Γ ⊨ Θ | Δ ⊢ Λ𝑥.𝑢 ≡ Λ𝑥.𝑣 : ∀𝑥:𝐴𝐵

Γ ⊨ Θ | Σ, 𝑥 : 𝐴 | Δ | Ξ ⊢ 𝑢 ↦ 𝑣 : 𝐵 ∀-I-↦
Γ ⊨ Θ | Σ | Δ | Ξ ⊢ Λ𝑥.𝑢 ↦ Λ𝑥.𝑣 : ∀𝑥:𝐴𝐵

Γ ⊨ Θ | Δ ⊢ 𝑢 : ∀𝑎:𝐴𝐵
Γ, Θ | ⋄ | ⋄ ⊢ 𝑣 : 𝐴 ∀-E

Γ ⊨ Θ | Δ ⊢ 𝑢@𝑣 : 𝐵[𝑎 ↦ 𝑣]

Γ ⊨ Δ ⊢ 𝑢 ≡ 𝑢′ : ∀𝑎:𝐴𝐵 Γ ⊢ 𝑣 ≡ 𝑣′ : 𝐴 ∀-E-L-≡
Γ ⊨ Δ ⊢ 𝑢@𝑣 ≡ 𝑢′@𝑣′ : 𝐵[𝑎 ↦ 𝑣]

Γ ⊨ Θ | Σ | Δ | Ξ ⊢ 𝑢 ↦ 𝑢′ : ∀𝑎:𝐴𝐵 Γ, Θ, Σ | ⋄ | ⋄ | ⋄ | ⋄ ⊢ 𝑣 ↦ 𝑣′ : 𝐴 ∀-E-↦
Γ ⊨ Θ | Σ | Δ | Ξ ⊢ 𝑢@𝑣 ↦ 𝑢′@𝑣′ : 𝐵[𝑎 ↦ 𝑣]

C.10 Monoidal product
Γ ⊢ 𝐴 type Γ ⊢ 𝐵 type ⊗-F

Γ ⊢ 𝐴 ⊗ 𝐵 type
Γ ⊢ 𝐴 ≡ 𝐴′ : Type Γ ⊢ 𝐵 ≡ 𝐵′ : Type ⊗-≡

Γ ⊢ 𝐴 ⊗ 𝐵 ≡ 𝐴′ ⊗ 𝐵′ : Type

Γ ⊨ Θ | Δ1 ⊢ 𝑢 : 𝐴 Γ ⊨ Θ | Δ2 ⊢ 𝑣 : 𝐵 ⊗-I
Γ ⊨ Θ | Δ1, Δ2 ⊢ (𝑢, 𝑣) : 𝐴 ⊗ 𝐵

Γ ⊨ Θ | Δ1 ⊢ 𝑢 ≡ 𝑢′ : 𝐴
Γ ⊨ Θ | Δ2 ⊢ 𝑣 ≡ 𝑣′ : 𝐵 ⊗-I-≡

Γ ⊨ Θ | Δ1, Δ2 ⊢ (𝑢, 𝑣) ≡ (𝑢′, 𝑣′) : 𝐴 ⊗ 𝐵

Γ ⊨ Θ | Σ | Δ1 | Ξ1 ⊢ 𝑢 ↦ 𝑢′ : 𝐴 Γ ⊨ Θ | Σ | Δ2 | Ξ2 ⊢ 𝑣 ↦ 𝑣′ : 𝐵 ⊗-I-↦
Γ ⊨ Θ | Σ | Δ1, Δ2 | Ξ1, Ξ2 ⊢ (𝑢, 𝑣) ↦ (𝑢′, 𝑣′) : 𝐴 ⊗ 𝐵

– 𝜔 + 16 –

Appendix C Hanaba typing system

Γ ⊨ Θ | Δ1, 𝑥 : 𝐴, 𝑦 : 𝐵 ⊢ 𝑡 : 𝐶 Γ ⊨ Θ | Δ2 ⊢ 𝑢 : 𝐴 ⊗ 𝐵 ⊗-E
Γ ⊨ Θ | Δ1, Δ2 ⊢ let (𝑥, 𝑦) = 𝑢 in 𝑡 : 𝐶

Γ ⊨ Θ | Δ1, 𝑥 : 𝐴, 𝑦 : 𝐵 ⊢ 𝑣 ≡ 𝑣′ : 𝐶 Γ ⊨ Θ | Δ2 ⊢ 𝑢 ≡ 𝑢′ : 𝐴 ⊗ 𝐵 ⊗-E-≡
Γ ⊨ Θ | Δ1, Δ2 ⊢ let (𝑥, 𝑦) = 𝑢 in 𝑣 ≡ let (𝑥, 𝑦) = 𝑢′ in 𝑣′ : 𝐶

Γ ⊨ Θ | Σ | Δ1 | Ξ1, 𝑥 : 𝐴, 𝑦 : 𝐵 ⊢ 𝑣 ↦ 𝑣′ : 𝐶 Γ ⊨ Θ | Σ | Δ2 | Ξ2 ⊢ 𝑢 ↦ 𝑢′ : 𝐴 ⊗ 𝐵 ⊗-E-↦
Γ ⊨ Θ | Σ | Δ1, Δ2 | Ξ1, Ξ2 ⊢ let (𝑥, 𝑦) = 𝑢 in 𝑣 ↦ let (𝑥, 𝑦) = 𝑢′ in 𝑣′ : 𝐶

C.11 Existential quantifier

Γ ⊢ 𝐴 type Γ, 𝑎 : 𝐴 ⊢ 𝐵 type ∃-F
Γ ⊢ ∃𝑎:𝐴𝐵 type

Γ ⊢ 𝐴 ≡ 𝐴′ type
Γ, 𝑎 : 𝐴 ⊢ 𝐵 ≡ 𝐵′ type ∃-≡

Γ ⊢ ∃𝑎:𝐴𝐵 ≡ ∃𝑎:𝐴′𝐵′ type

Γ, Θ | ⋄ | ⋄ ⊢ 𝑢 : 𝐴
Γ ⊨ Θ | Δ ⊢ 𝑣 : 𝐵[𝑎 ↦ 𝑢] ∃-I
Γ ⊨ Θ | Δ ⊢ ⟨𝑢, 𝑣⟩ : ∃𝑎:𝐴𝐵

Γ, Θ | ⋄ | ⋄ ⊢ 𝑢 ≡ 𝑢′ : 𝐴
Γ ⊨ Θ | Δ ⊢ 𝑣 ≡ 𝑣′ : 𝐵[𝑎 ↦ 𝑢] ∃-I-≡

Γ ⊨ Θ | Δ ⊢ ⟨𝑢, 𝑣⟩ ≡ ⟨𝑢′, 𝑣′⟩ : ∃𝑎:𝐴𝐵

Γ, Θ, Σ | ⋄ | ⋄ | ⋄ | ⋄ ⊢ 𝑢 ↦ 𝑢′ : 𝐴 Γ ⊨ Θ | Σ | Δ | Ξ ⊢ 𝑣 ↦ 𝑣′ : 𝐵[𝑎 ↦ 𝑢] ∃-I-↦
Γ ⊨ Θ | Σ | Δ | Ξ ⊢ ⟨𝑢, 𝑣⟩ ↦ ⟨𝑢′, 𝑣′⟩ : ∃𝑎:𝐴𝐵

Γ ⊨ Θ | Δ1 ⊢ 𝑢 : ∃𝑎:𝐴𝐵 Γ ⊨ Θ, 𝑥 : 𝐴 | Δ2, 𝑦 : 𝐵[𝑎 ↦ 𝑥] ⊢ 𝑣 : 𝐶 Γ ⊨ Θ ⊢ 𝐶 type ∃-E
Γ ⊨ Θ | Δ1, Δ2 ⊢ let ⟨𝑥, 𝑦⟩ = 𝑢 in 𝑣 : 𝐶

Γ ⊨ Θ | Δ1 ⊢ 𝑢 ≡ 𝑢′ : ∃𝑎:𝐴𝐵 Γ ⊨ Θ, 𝑥 : 𝐴 | Δ2, 𝑦 : 𝐵[𝑎 ↦ 𝑥] ⊢ 𝑣 ≡ 𝑣′ : 𝐶 ∃-E-≡
Γ ⊨ Θ | Δ1, Δ2 ⊢ let ⟨𝑥, 𝑦⟩ = 𝑢 in 𝑣 ≡ let ⟨𝑥, 𝑦⟩ = 𝑢′ in 𝑣′ : 𝐶

Γ ⊨ Δ1 ⊢ 𝑢 ↦ 𝑢′ : ∃𝑎:𝐴𝐵 Γ, 𝑥 : 𝐴 | Δ2, 𝑦 : 𝐵[𝑎 ↦ 𝑥] ⊢ 𝑣 ↦ 𝑣′ : 𝐶 ∃-E-↦
Γ ⊨ Δ1, Δ2 ⊢ let ⟨𝑥, 𝑦⟩ = 𝑢 in 𝑣 ↦ let ⟨𝑥, 𝑦⟩ = 𝑢′ in 𝑣′ : 𝐶

C.12 Bang modality
Γ ⊢ 𝐴 type !-F
Γ ⊢ !𝐴 type

Γ ⊢ 𝐴 ≡ 𝐴′ type !-≡
Γ ⊢ !𝐴 ≡ !𝐴′ type

Γ ⊨ Θ | 𝑥1 : !𝐴1, …, 𝑥𝑛 : !𝐴𝑛 ⊢ 𝑡 : 𝐴 Γ ⊨ Θ | Δ1 ⊢ 𝑢1 : !𝐴1 … Γ ⊨ Θ | Δ𝑛 ⊢ 𝑢𝑛 : !𝐴𝑛 !-I
Γ ⊨ Θ | Δ1, …, Δ𝑛 ⊢ let* 𝑥1 = 𝑢1 in … let* 𝑥𝑛 = 𝑢𝑛 in box 𝑡 : !𝐴

Γ ⊨ Θ | 𝑥1 : !𝐴1, …, 𝑥𝑛 : !𝐴𝑛 ⊢ 𝑢 ≡ 𝑣 : 𝐴 Γ ⊨ Θ | Δ1 ⊢ 𝑢1 ≡ 𝑣1 : !𝐴1 …
Γ ⊨ Θ | Δ𝑛 ⊢ 𝑢𝑛 ≡ 𝑣𝑛 : !𝐴𝑛 !-I-≡

Γ ⊨ Θ | Δ1, …, Δ𝑛 ⊢ let* 𝑥1 = 𝑢1 in
…
let* 𝑥𝑛 = 𝑢𝑛 in
box 𝑢

≡ let* 𝑥1 = 𝑣1 in
…
let* 𝑥𝑛 = 𝑣𝑛 in
box 𝑣

: !𝐴

Γ ⊨ Θ | Σ | ⋄ | 𝑥1 : !𝐴1, …, 𝑥𝑛 : !𝐴𝑛 ⊢ 𝑢 ↦ 𝑣 : 𝐴 Γ ⊨ Θ | Σ | Δ1 | Ξ1 ⊢ 𝑢1 ↦ 𝑣1 : !𝐴1
… Γ ⊨ Θ | Σ | Δ𝑛 | Ξ𝑛 ⊢ 𝑢𝑛 ↦ 𝑣𝑛 : !𝐴𝑛 !-I-↦

Γ ⊨ Θ | Σ | Δ1, …, Δ𝑛 | Ξ1, …, Ξ𝑛 ⊢ let* 𝑥1 = 𝑢1 in
…
let* 𝑥𝑛 = 𝑢𝑛 in
box 𝑢

↦ let* 𝑥1 = 𝑣1 in
…
let* 𝑥𝑛 = 𝑣𝑛 in
box 𝑣

: !𝐴

– 𝜔 + 17 –

Appendix C Hanaba typing system

Γ ⊨ Θ | Δ ⊢ 𝑡 : !𝐴 !-E
Γ ⊨ Θ | Δ ⊢ unbox 𝑡 : 𝐴

Γ ⊨ Θ | Δ ⊢ 𝑢 ≡ 𝑣 : !𝐴 !-E-≡
Γ ⊨ Θ | Δ ⊢ unbox 𝑢 ≡ unbox 𝑣 : 𝐴

Γ ⊨ Θ | Σ | Δ | Ξ ⊢ 𝑢 ↦ 𝑣 : !𝐴 !-E-↦
Γ ⊨ Θ | Σ | Δ | Ξ ⊢ unbox 𝑢 ↦ unbox 𝑣 : 𝐴

Γ ⊨ Θ | Δ ⊢ 𝑡 : !𝐴 !-diag
Γ ⊨ Θ | Δ ⊢ diag 𝑡 : !𝐴 ⊗ !𝐴

Γ ⊨ Θ | Δ ⊢ 𝑢 ≡ 𝑣 : !𝐴 !-diag-≡
Γ ⊨ Θ | Δ ⊢ diag 𝑢 ≡ diag 𝑣 : !𝐴 ⊗ !𝐴

Γ ⊨ Θ | Σ | Δ | Ξ ⊢ 𝑢 ↦ 𝑣 : !𝐴 !-diag-↦
Γ ⊨ Θ | Σ | Δ | Ξ ⊢ diag 𝑢 ↦ diag 𝑣 : !𝐴 ⊗ !𝐴

Γ ⊨ Θ | Δ ⊢ 𝑢 : !𝐴 !-𝜂
Γ ⊨ Θ | Δ ⊢ 𝑢 ≡ let* 𝑥 = 𝑢 in box (unbox 𝑢) : !𝐴

C.13 With
Γ ⊢ 𝐴 type Γ ⊢ 𝐵 type &-F

Γ ⊢ 𝐴&𝐵 type
Γ ⊢ 𝐴 ≡ 𝐴′ type Γ ⊢ 𝐵 ≡ 𝐵′ type &-≡

Γ ⊢ 𝐴&𝐵 ≡ 𝐴′&𝐵′ type

Γ ⊨ Θ | Δ ⊢ 𝑢 : 𝐴 Γ ⊨ Θ | Δ ⊢ 𝑣 : 𝐵 &-I
Γ ⊨ Θ | Δ ⊢ [𝑢, 𝑣] : 𝐴&𝐵

Γ ⊨ Θ | Δ ⊢ 𝑢 ≡ 𝑢′ : 𝐴
Γ ⊨ Θ | Δ ⊢ 𝑣 ≡ 𝑣′ : 𝐴 &-I-≡

Γ ⊨ Θ | Δ ⊢ [𝑢, 𝑣] ≡ [𝑢′, 𝑣′] : 𝐴&𝐵

Γ ⊨ Θ | Σ | Δ | Ξ ⊢ 𝑢 ↦ 𝑢′ : 𝐴
Γ ⊨ Θ | Σ | Δ | Ξ ⊢ 𝑣 ↦ 𝑣′ : 𝐴 &-I-↦

Γ ⊨ Θ | Σ | Δ | Ξ ⊢ [𝑢, 𝑣] ↦ [𝑢′, 𝑣′] : 𝐴&𝐵

&-E-1
Γ ⊨ Θ | ⋄ ⊢ 𝜋1 : 𝐴&𝐵 ⊸ 𝐴

&-E-2
Γ ⊨ Θ | ⋄ ⊢ 𝜋2 : 𝐴&𝐵 ⊸ 𝐵

&-E-1-↦
Γ ⊨ Θ | Σ | ⋄ | ⋄ ⊢ 𝜋1 ↦ 𝜋1 : 𝐴&𝐵 ⊸ 𝐴

&-E-2-↦
Γ ⊨ Θ | Σ | ⋄ | ⋄ ⊢ 𝜋2 ↦ 𝜋2 : 𝐴&𝐵 ⊸ 𝐵

C.14 Coproduct
Γ ⊢ 𝐴 type Γ ⊢ 𝐵 type ⊕-F

Γ ⊢ 𝐴 ⊕ 𝐵 type
Γ ⊢ 𝐴 ≡ 𝐴′ type Γ ⊢ 𝐵 ≡ 𝐵′ type ⊕-≡

Γ ⊢ 𝐴 ⊕ 𝐵 ≡ 𝐴′ ⊕ 𝐵′ type

⊕-I-1
Γ ⊨ Θ | ⋄ ⊢ 𝜄1 : ∀𝐴: Type∀𝐵: Type𝐴 ⊸ 𝐴 ⊕ 𝐵

⊕-I-1-↦
Γ ⊨ Θ | Σ | ⋄ | ⋄ ⊢ 𝜄1 ↦ 𝜄1 : ∀𝐴: Type∀𝐵: Type𝐴 ⊸ 𝐴 ⊕ 𝐵

⊕-I2
Γ ⊨ Θ | ⋄ ⊢ 𝜄2 : ∀𝐴: Type∀𝐵: Type𝐵 ⊸ 𝐴 ⊕ 𝐵

⊕-I2-↦
Γ ⊨ Θ | Σ | ⋄ | ⋄ ⊢ 𝜄2 ↦ 𝜄2 : ∀𝐴: Type∀𝐵: Type𝐵 ⊸ 𝐴 ⊕ 𝐵

⊕-E
Γ ⊨ Θ | ⋄ ⊢ R⊕ : ∀𝐴: Type∀𝐵: Type∀𝑃:∀𝑥:𝐴⊕𝐵 Type(Π𝑎:𝐴𝑃(𝜄1𝑎)) ⊸ (Π𝑏:𝐵𝑃(𝜄2𝑏)) ⊸ Π𝑥:𝐴⊕𝐵𝑃(𝑥)

⊕-E-↦
Γ ⊨ Θ | Σ | ⋄ | ⋄ ⊢ R⊕ ↦ R⊕ : ∀𝐴: Type∀𝐵: Type∀𝑃:∀𝑥:𝐴⊕𝐵 Type(Π𝑎:𝐴𝑃(𝜄1𝑎)) ⊸ (Π𝑏:𝐵𝑃(𝜄2𝑏)) ⊸ Π𝑥:𝐴⊕𝐵𝑃(𝑥)

C.15 Unit
1-F

Γ ⊢ 1 type
1-I

Γ ⊨ Θ | ⋄ ⊢ ∗ : 1

1-I-↦
Γ ⊨ Θ | Σ | ⋄ | ⋄ ⊢ ∗ ↦ ∗ : 1

Γ ⊨ Θ | Δ1 ⊢ 𝑢 : 1 Γ ⊨ Θ | Δ2 ⊢ 𝑣 : 𝐴 1-E
Γ ⊨ Θ | Δ1, Δ2 ⊢ 𝑢; 𝑣 : 𝐴

– 𝜔 + 18 –

Appendix C Hanaba typing system

Γ ⊨ Θ | Δ1 ⊢ 𝑢 ≡ 𝑢′ : 1 Γ ⊨ Θ | Δ2 ⊢ 𝑣 ≡ 𝑣′ : 𝐴 1-E-≡
Γ ⊨ Θ | Δ1, Δ2 ⊢ 𝑢; 𝑣 ≡ 𝑢′; 𝑣′ : 𝐴

Γ ⊨ Θ | Σ | Δ1 | Ξ1 ⊢ 𝑢 ↦ 𝑢′ : 1 Γ ⊨ Θ | Σ | Δ2 | Ξ2 ⊢ 𝑣 ↦ 𝑣′ : 𝐴 1-E-↦
Γ ⊨ Θ | Σ | Δ1, Δ2 | Ξ1, Ξ2 ⊢ 𝑢; 𝑣 ↦ 𝑢′; 𝑣′ : 𝐴

%

– 𝜔 + 19 –

Appendix D Semantic type formers

D Semantic type formers
What we have defined so far forms the backbone of Hanaba models. In order to interpret the
syntax, we additionally need to have semantic counterparts to type formers.

D.1 Linear implication
A Habana model supports linear implication if the category Ty𝑙(Γ ⊨ Θ) is monoidal closed, that
is, there exists, for every 𝐴, 𝐵 : Ty𝑙(Γ ⊨ Θ), an object 𝐴 ⊸ 𝐵 (16) , and natural bijections

𝜆

ev
Ty𝑙(Γ ⊨ Θ)(𝐴 ⊗ 𝐵, 𝐶) Ty𝑙(Γ ⊨ Θ)(𝐴, 𝐵 ⊸ 𝐶)

such that ⦃−⦄Γ⊨Θ, restricted to Ty𝑙(Γ ⊨ Θ), is a monoidal closed functor.

D.2 Universal quantification
A Habana model supports universal quantification if, for any global context Γ : ℬ, for Θ :
Ctxt(Γ), for 𝐴 : Ty(Γ ⊨ Θ) and 𝐵 : Ty(Γ ⊨ Θ.𝐴), there exists a type ∀(𝐴, 𝐵) : Ty(Γ ⊨ Θ) such
that, for any term 𝑢 : Tm(Γ ⊨ Θ | Δ ⊢ ∀(𝐴, 𝐵)), and a term 𝑣 : Tm(Γ, Θ ⊨ ⟨⟩Γ,Θ | 1⟨⟩Γ,Θ

⊢
𝐴{𝜈Θ}), there is a term At(𝑢, 𝑣) : Tm(Γ ⊨ Θ | Δ ⊢ 𝐵{𝑣}) (17) and, for any term 𝑢 : Tm(Γ ⊨
Θ.𝐴 | Δ{p𝐴} ⊢ 𝐵), there is a term Λ(𝑢) : Tm(Γ ⊨ Θ | Δ ⊢ ∀(𝐴, 𝐵)) (18) such that

At(Λ(𝑢), 𝑣) = 𝑢{𝑣}

where

𝜈−1
Θ

𝑣

𝑞(𝑣)

𝑞([𝜈Θ]𝑝𝐴)

Θ ⟨⟩Γ,Θ

⟨⟩Γ,Θ.𝐴{𝜈Θ}

Θ.𝐴

Additionally, these constructors must be compatible with substitutions and with the ↦ relation.

D.3 Existential quantification
A Hanaba model supports existential quantification if, for any global context Γ : ℬ, for Θ :
Ctxt(Γ), for 𝐴 : Ty(Γ ⊨ Θ) and 𝐵 : Ty(Γ ⊨ Θ.𝐴), there exists a type ∃(𝐴, 𝐵) : Ty(Γ ⊨ Θ) such
that, for any term 𝑢 : Tm(Γ, Θ ⊨ ⟨⟩Γ,Θ | 1⟨⟩Γ,Θ

⊢ 𝐴{𝜈Θ}) and a term 𝑣 : Tm(Γ ⊨ Θ | Δ ⊢ 𝐵{𝑢̃}),
there is a term Pair(𝑢, 𝑣) : Tm(Γ ⊨ Θ | Δ ⊢ ∃(𝐴, 𝐵)) (19) and, for any Δ : Ty(Γ ⊨ Θ), there is
a morphism Unpair(Δ, 𝐴, 𝐵) (20) as follows:

Unpair(Δ, 𝐴, 𝐵) : Δ ⊗ ∃(𝐴, 𝐵) ⟶ (Δ{p𝐴}) ⊗ 𝐵

such that, for any type 𝐶 : Ty(Γ ⊨ Θ) and a term 𝑡 : Tm(Γ ⊨ Θ.𝐴 | Δ′{p𝐴} ⊗ 𝐵 ⊢ 𝐶{p𝐴}), we
have that the following diagram commutes

– 𝜔 + 20 –

Appendix D Semantic type formers

≅

Δ′{p𝐴} ⊗ 𝑣 Δ′{p𝐴} ⊗ [𝑢̃ ∘ p𝐴]𝐵 𝑡

[p𝐴]𝑝Δ′⊗Δ Δ′ ⊗ Pair(𝑢, 𝑣) Unpair(Δ′, 𝐴, 𝐵)

𝑡

Δ′{p𝐴} ⊗ Δ{p𝐴} Δ′{p𝐴} ⊗ 𝐵{𝑢̃}{p𝐴} Δ′{p𝐴} ⊗ 𝐵 𝐶{p𝐴}

(Δ′ ⊗ Δ){p𝐴} Δ′ ⊗ Δ Δ′ ⊗ ∃(𝐴, 𝐵) Δ{p𝐴} ⊗ 𝐵

The commutation of this diagram ensures that the 𝛽 rule for existential types is respected.

D.4 Singleton type
Let Γ : ℬ, Θ : Ctxt(Γ), 𝐴 : Ty(Γ ⊨ Θ). For any linear term 𝑡 : Tm(Γ, Θ ⊨ ⟨⟩Γ,Θ | 1⟨⟩Γ,Θ

⊢
𝐴{𝜈Θ}), assume there is a type Sgl(𝑡) : Ty(Γ ⊨ Θ) (21) .

Furthermore, assume that, for any any enriched context (Δ, Δ, 𝜎, 𝛿), and for any 𝑢 : Tm(Γ ⊨
Θ | Δ ⊢ 𝐴) making the following diagram commute

[𝜈Θ]𝐴

𝑢

𝛿 1𝜈Θ

𝑡

𝐴

𝐴{𝜈Θ}

Δ 1𝜈Θ
1⟨⟩Γ,Θ

there is a term Loop(𝑢) (22) :

Loop(𝑢, 𝑡) : Tm(Γ ⊨ Θ | Δ ⊢ Sgl(𝑡))

D.5 Interpreting the syntax
Given a Hanaba model, we define in a mutual recursive way the following:
• given a (syntactic) context Γ such that ⊢ Γ ctxt, we interpret it as a global context ⟦Γ⟧ : ℬ
• given a (syntactic) context Θ such that ⊢ Γ, Θ ctxt, we interpret it as ⟦Γ ⊨ Θ⟧ : Ctxt(⟦Γ⟧)
• given a (syntactic) annotated context Δ such that Γ, Θ ⊢ Δ ctxt, we interpret it as an

enriched linear context ⟦Δ⟧ : Ty(⟦Γ⟧ ⊨ ⟦Θ⟧), where ⟦Δ⟧ = ⟦Δ⟧, with Δ being define as
follows:

⋄ = ⋄
(Δ, 𝑥 : 𝐴) = Δ

(Δ, 𝑥 ↦ 𝑎 : 𝐴) = Δ, 𝑥 : 𝐴
• given a (syntactic) type 𝐴 such that Γ, Θ ⊢ 𝐴 type, we interpret it as ⟦𝐴⟧ : Ty(⟦Γ⟧ ⊨ ⟦Θ⟧)
• given a (syntactic) context Ξ such that Γ, Θ ⊢ Ξ ctxt, we interpret it as ⟦Ξ⟧ : Ty(⟦Γ⟧ ⊨ ⟦Θ⟧)
• given a (syntactic) term 𝑡 such that Γ ⊨ Θ | Δ ⊢ 𝑡 : 𝐴, we interpret it as a linear term

⟦𝑡⟧ : Tm(⟦Γ⟧ ⊨ ⟦Θ⟧ | ⟦Δ⟧ ⊢ ⟦𝐴⟧)
• given two terms 𝑢 and 𝑣 such that Γ ⊨ Θ | Σ | Δ | Ξ ⊢ 𝑢 ↦ 𝑣 : 𝐴, it will hold that ⟦𝑢⟧ ↦ ⟦𝑣⟧

– 𝜔 + 21 –

Appendix D Semantic type formers

• given contexts Γ, Θ and Δ such that Γ, Θ ⊢ Δ ctxt, and a type 𝐴 such that Γ, Θ ⊢ 𝐴 type,
it will hold that

⟦Γ ⊨ Θ, 𝑥 : 𝐴 ⊢ Δ⟧ = ⟦Γ ⊨ Θ ⊢ Δ⟧{p⟦Γ⊨Θ⊢𝐴⟧}

• given contexts Γ, Θ and Δ such that Γ, Θ ⊢ Δ ctxt, it will hold that

⟦Γ, Θ ⊨ ⋄ ⊢ Δ⟧ = ⟦Γ ⊨ Θ ⊢ Δ⟧{𝜈⟦Γ⊨Θ⟧}

We do so, in every case, by induction on the derivation.

For instance, the {}-I case is

Γ ⊨ Θ | ⋄ | Δ | ⋄ ⊢ 𝑡 ↦ 𝑎 : 𝐴 {}-I
Γ ⊨ Θ | Δ ⊢ loop 𝑡 : {𝑎}𝐴

By induction hypothesis, we have ⟦𝑡⟧ : Tm(⟦Γ⟧ ⊨ ⟦Θ⟧ | ⟦Δ⟧ ⊢ ⟦𝐴⟧), and ⟦𝑎⟧ : Tm(⟦Γ⟧, ⟦Θ⟧ ⊨
⟨⟩ ⊢ ⟦𝐴⟧{𝜈⟦Θ⟧}) such that ⟦𝑡⟧ ↦ ⟦𝑎⟧. We therefore have

⟦loop 𝑡⟧ = Loop(⟦𝑡⟧, ⟦𝑎⟧)

– 𝜔 + 22 –

Appendix E Summary of Hanaba model

E Summary of Hanaba model
As the definition of a Hanaba model is quite large, we have summed up here all the data in its
definition (that is, we do enumerate here the properties that we also assume on this structure).

(1) Fibered double category ℬ∗ over ℬ .. 15
(2) Unit ⟨⟩ : ℬ → ℬ∗ ... 15
(3) Multiplication −, − : ℬ∗ ×ℬ ℬ∗ ⟶ ℬ∗ ... 15
(4) Fibered double category ℰ over ℬ∗ ... 15
(5) Unit 1 : ℬ∗ → ℰ .. 15
(6) Multiplication Σ : ℰ ×ℬ∗

ℰ → ℰ ... 15
(7) L𝜆Mod-fibered fibration 𝜐 : 𝒞 → ℬ ... 16
(8) Global context projection p : 𝐹 ⇒ 𝜋 .. 16
(9) Global variable term vΘ : Tm(Γ, Θ ⊨ Θ{pΘ}) .. 17

(10) Substitution extension ⟨𝜌, 𝑡⟩ .. 17
(11) Pointed context projection p : 𝑞 ⇒ 𝑝 .. 17
(12) Pointed variable term v𝐴 .. 18
(13) Pointed substitution extension ⟨𝜌, 𝑡⟩ ... 18
(14) Shape functor 𝑆Γ : ℰΓ↓ → 𝒞Γ .. 18
(15) Type erasure functor ⦃−⦄Γ⊨Θ : Ty(Γ ⊨ Θ) → 𝒞Γ .. 18
(16) Semantic linear implication 𝐴 ⊸ 𝐵 .. 44
(17) Semantic universal application At(𝑢, 𝑣) .. 44
(18) Semantic universal abstraction Λ(𝑢) ... 44
(19) Semantic pair constructor Pair(𝑢, 𝑣) ... 44
(20) Unpair morphism Unpair(Δ, 𝐴, 𝐵) ... 44
(21) Semantic singleton type Sgl(𝑡) .. 45
(22) Semantic loop Loop(𝑢, 𝑡) ... 45

– 𝜔 + 23 –

Appendix F Chain model

F Chain model
The Hanaba syntax and semantics has been thought of by inspection of a concrete model which
has been developed during the internship, the chain model. This model is the subject of the
current section: in addition to exhibit its definition, we’ll see that it is indeed a Hanaba model.

Assume we are given a double category

𝑠 𝑡

𝒯

𝒯 𝒯

where 𝑡 is a fibration, with multiplication ⊛ and unit 𝑒.

For 𝑛 : ℕ, we will define a categorical span 𝒯 ⟵
𝑡𝑛

𝒯𝑛 ⟶
𝑠𝑛

𝒯 by induction over 𝑛:
• 𝒯0 ≔ 𝒯 , with 𝑡0 = 𝑠0 = id𝒯
• for 𝑛 : ℕ, assume 𝒯 ⟵

𝑡𝑛
𝒯𝑛 ⟶

𝑠𝑛
𝒯 given, consider the following pullback

𝜋𝑛
1 𝜋𝑛

2𝑠𝑛+1 𝑡𝑛+1

𝑠 𝑡 𝑠𝑛 𝑡𝑛

𝒯𝑛+1

𝒯 𝒯𝑛

𝒯 𝒯 𝒯

Note that, for every 𝑛 : ℕ, 𝑡𝑛 is a fibration, by Proposition A.2.1 and Proposition A.2.2.

F.1 Chain-like structures
This subsection contains a definition and some properties of chain-like structures, which are
artifacts for building the chain model. They are an abstract version of a chain category, and
are used to prove several lemmas at once, without repeating oneself. Some intuition on them
will probably emerge after having read the rest of the section, so in first reading, we suggest
skipping this subsection.

Definition F.1.1 (Chain-like structure)

A chain-like structure 𝐶 = (𝑝, 𝑞, 𝜀, 𝑟, 𝜇, 𝑠) is the data of
• a fibration 𝑝 : ℰ → 𝒯
• a functor 𝑞 : 𝒞 → 𝒯
• a section of 𝑝 𝜀 : 𝒯 → ℰ, that is, such that the following diagram commutes

– 𝜔 + 24 –

Appendix F Chain model

𝜀

idℬ

𝑝

ℬ ℰ

𝒯
• a functor 𝑟 : ℰ → 𝒯
• a functor 𝜇 : ℰ2 → ℰ where ℰ2 is the following pullback

𝑝1

𝑝2

𝑝

𝑟

ℰ2 ℰ

ℰ 𝒯

such that the following diagram commutes

𝜇

𝑝1

𝑝

𝑝

ℰ2 ℰ

ℰ 𝒯

and for any 𝑓 : 𝑆 → 𝑇 in ℰ, and any 𝑅 : ℰ2 such that 𝜇(𝑅) = 𝑇 , there exists a unique
object 𝑓∗(𝑅) in ℰ2 and a unique morphism 𝑓↑ : 𝑓∗(𝑅) → 𝑅 such that the following
diagram commutes

𝜇

𝑓↑

𝜇

𝑓

𝑓∗(𝑅) 𝑅

𝑆 𝑇
♣

For the rest of the section, assume we are given a chain-like structure.

Definition F.1.2 (Unit of a chain-like structure)

We define the unit of the chain-like structure 𝑢𝐶 : 𝒞 → 𝒞 ×𝒯 ℰ as the unique functor
making the following diagram commute

– 𝜔 + 25 –

Appendix F Chain model

𝜀 ∘ 𝑞

id𝒞

𝑢

𝜋1

𝜋2

𝑝

𝑞

𝒞

𝒞 ×𝒯 ℰ ℰ

𝒞 𝒯

This functor is well-defined because the following diagram commutes

𝑞

𝑞
id𝒯

𝜀

𝑝

𝒞 𝒯

𝒯 ℰ

Indeed, the right-most triangle commutes by definition of 𝜀.
♣

Lemma F.1.3

𝑢𝐶 is a fibration morphism

𝑢𝐶 : id𝒞 → 𝜋1

Note that id𝒞 is a fibration by Proposition A.2.3.
♡

Proof. The following diagram commutes by definition of 𝑢𝐶 :

𝑢𝐶

id𝒞 𝜋1

𝒞 𝒞 ×𝒯 ℰ

𝒞

We furthermore need to check that 𝑢𝐶 preserves cartesian morphisms, that is, since every
morphism is cartesian with respect to the identity fibration, that 𝑢𝐶 sends any morphism on a
cartesian one.

Let 𝑓 : 𝑋 → 𝑌 be a morphism in 𝒞. Let us show that 𝑢𝐶(𝑓) is cartesian too. Consider (𝑔, 𝑔′) :
(𝑍, 𝑅) → (𝑌 , 𝜀(𝑞(𝑌))) and ℎ : 𝑍 → 𝑋 making the following diagram commutes

– 𝜔 + 26 –

Appendix F Chain model

𝜋1

(𝑔, 𝑔′)

(𝑓, 𝜀(𝑞(𝑓)))

𝜋1𝑔
ℎ

𝑓

(𝑍, 𝑅)

(𝑋, 𝜀(𝑞(𝑋))) (𝑌 , 𝜀(𝑞(𝑌)))

𝑍

𝑋 𝑌

𝜋1𝜋1

Note that 𝑞(𝑔) = 𝑝(𝑔′), so

𝜀(𝑞(𝑔)) = 𝜀(𝑝(𝑔′)) = 𝑔′

Hence the following diagram commutes

𝜋1

(𝑔, 𝑔′)

(ℎ, 𝜀(𝑞(ℎ)))

(𝑓, 𝜀(𝑞(𝑓)))

𝜋1𝑔
ℎ

𝑓

(𝑍, 𝑅)

(𝑋, 𝜀(𝑞(𝑋))) (𝑌 , 𝜀(𝑞(𝑌)))

𝑍

𝑋 𝑌

𝜋1𝜋1

Furthermore, suppose that we have another ℎ′ such that (ℎ, ℎ′) also makes the diagram
commute. We would have 𝑞(ℎ) = 𝑝(ℎ′), and so by the same reasoning as before, ℎ′ = 𝜀(𝑞(ℎ)),
so ℎ′ is indeed unique.

Hence 𝑢𝐶(𝑓) = (𝑓, 𝜀(𝑞(𝑓))) is cartesian. □

Definition F.1.4 (Multiplication of a chain-like structure)

Consider 𝒞 ×𝒯 ℰ2 the following pullback

– 𝜔 + 27 –

Appendix F Chain model

𝜋′
2

𝜋′
1

𝑝1

𝑝

𝑞

𝒞 ×𝒯 ℰ2 ℰ2

ℰ

𝒞 𝒯

Since 𝑝1 is the pullback of 𝑝 by 𝑟, and 𝑝 is a fibration, by Proposition A.2.1, 𝑝1 is a
fibration. Furthermore by Proposition A.2.2 𝑝 ∘ 𝑝1 is a fibration too, so by Proposition
A.2.1, 𝜋′

1 is also a fibration.

Let 𝑚𝐶 : 𝒞 ×𝒯 ℰ2, the multiplication of 𝐶, be defined as the unique morphism making
the following diagram commute.

𝜇 ∘ 𝜋′
2

𝜋′
1

𝑚𝐶

𝑝′
1

𝑝′
2

𝑝

𝑞

𝒞 ×𝒯 ℰ2

𝒞 ×𝒯 ℰ ℰ

𝒞 𝒯

This is well-defined as the following outer diagram commutes

𝜋′
2

𝜇

𝑝

𝜋′
1

𝑞

𝑝1

𝑝

ℰ ℰ

𝒯

𝒞

𝒞 ×𝒯 ℰ2

ℰ2

Indeed, the inner diagram on the right commutes by definition of 𝜇, and the one on the
left by definition of the pullback 𝒞 ×𝒯 ℰ2.

♣

– 𝜔 + 28 –

Appendix F Chain model

Lemma F.1.5

For any diagram of the form

𝑚𝐶

𝑓

(𝑅, 𝑆)

𝑋 𝑌

there exists a unique 𝑓∗(𝑅, 𝑆) in 𝒞 ×𝒯 ℰ2 and a unique morphism 𝑓↑ : 𝑓∗(𝑅, 𝑆) → (𝑅, 𝑆)
making the following diagram commute

𝑓↑

𝑚𝐶 𝑚𝐶

𝑓

𝑓∗(𝑅, 𝑆) (𝑅, 𝑆)

𝑋 𝑌
♡

Proof. Suppose we have a 𝑔 : 𝑇 → (𝑅, 𝑆) such that the following diagram commute

𝑔

𝑚𝐶 𝑚𝐶

𝑓

𝑇 (𝑅, 𝑆)

𝑋 𝑌

then in particular we have 𝑔1 = 𝑓1, and 𝑔2 makes the following diagram commute

𝑔2

𝜇 𝜇

𝑓2

𝑇2 𝑆

𝑋2 𝑌2

by assumption on 𝜇, 𝑔2 = 𝑓↑
2 , so 𝑔 = (𝑓1, 𝑓

↑
2) is uniquely determined.

Let us now prove existence, by showing that (𝑓1, 𝑓
↑
2) is a valid candidate. First of all, it is

indeed a morphism in 𝒞 ×𝒯 ℰ2:

𝑝(𝑝1(𝑓↑
2)) = 𝑝(𝜇(𝑓↑

2)) by assumption on 𝜇

= 𝑝(𝑓2) by definition of 𝑓↑
2

= 𝑞(𝑓1) because (𝑓1, 𝑓2) is in 𝒞 ×𝒯 ℰ

Furthermore, the following diagram commutes

– 𝜔 + 29 –

Appendix F Chain model

(𝑓1, 𝑓
↑
2)

𝑚𝐶 𝑚𝐶

𝑓

(𝑋1, 𝑓∗
2(𝑆)) (𝑅, 𝑆)

𝑋 𝑌

 □

Lemma F.1.6

The multiplication 𝑚𝐶 is a fibration morphism

𝑚𝐶 : 𝜋′
1 → 𝑝′

1

Note that 𝑝′
1 is a fibration as it is the pullback of 𝑝, by Proposition A.2.1.

♡

Proof. Consider a 𝜋′
1-cartesian morphism 𝑓 : (𝑅1, 𝑅2) → (𝑆1, 𝑆2) in 𝒞 ×𝒯 ℰ2. Let us show that

𝑚(𝑓1, 𝑓2) is 𝑝′
1-cartesian. Let 𝑔 : 𝑇 → 𝑚(𝑆1, 𝑆2) and ℎ : 𝑝′

1(𝑇) → 𝑝′
1(𝑅) making the following

diagram commute

𝑝′
1

𝑔

𝑚(𝑓1, 𝑓2)

𝑝′
1𝑝′

1(𝑔)
ℎ

𝑓1

𝑇

𝑚(𝑅1, 𝑅2) 𝑚(𝑆1, 𝑆2)

𝑝′
1(𝑇)

𝑅1 𝑆1

𝑝′
1𝑝′
1

By Lemma F.1.5, there exists a unique 𝑔↑ : 𝑔∗(𝑆1, 𝑆1) → (𝑆1, 𝑆2) making the following diagram
commute

𝑚

𝑔↑

𝑚

𝑔

𝑔∗(𝑆1, 𝑆2) (𝑆1, 𝑆2)

𝑇 𝑚(𝑆1, 𝑆2)

By cartesianity of 𝑓 , there exists a unique ℎ̂ making the following diagram commute

– 𝜔 + 30 –

Appendix F Chain model

𝜋′
1

𝑔↑

ℎ̂

𝑓

𝜋′
1𝑝′

1(𝑔)
ℎ

𝑓1

𝑔∗(𝑆1, 𝑆2)

𝑅 𝑆

𝑝′
1(𝑇)

𝑅1 𝑆1

𝜋′
1𝜋′
1

So in particular, the following diagram commutes

𝑝′
1

𝑔
𝑚(ℎ̂)

𝑚(𝑓1, 𝑓2)

𝑝′
1𝑝′

1(𝑔)
ℎ

𝑓1

𝑇

𝑚(𝑅1, 𝑅2) 𝑚(𝑆1, 𝑆2)

𝑝′
1(𝑇)

𝑅1 𝑆1

𝑝′
1𝑝′
1

Let us prove that 𝑚(ℎ̂) is unique. Consider a ℎ′ : 𝑇 → 𝑚(𝑅1, 𝑅2) making the following commute

𝑝′
1

𝑔

ℎ′

𝑚(𝑓1, 𝑓2)

𝑝′
1𝑝′

1(𝑔)
ℎ

𝑓1

𝑇

𝑚(𝑅1, 𝑅2) 𝑚(𝑆1, 𝑆2)

𝑝′
1(𝑇)

𝑅1 𝑆1

𝑝′
1𝑝′
1

By Lemma F.1.5, we can lift ℎ′ and it must agree with the lifting of 𝑔:

𝑔↑ = 𝑓 ∘ ℎ′↑

Hence, the following diagram commutes

– 𝜔 + 31 –

Appendix F Chain model

𝜋′
1

𝑔↑

ℎ′↑

𝑓

𝜋′
1𝑝′

1(𝑔)
ℎ

𝑓1

𝑔∗(𝑆1, 𝑆2)

𝑅 𝑆

𝑝′
1(𝑇)

𝑅1 𝑆1

𝜋′
1𝜋′
1

Hence ℎ′↑ satisfies the same universal property as ℎ̂, so we have

ℎ′↑ = ℎ̂

and so

𝑚(ℎ̂) = 𝑚(ℎ′↑) = ℎ′

 □

F.2 The global context category
Definition F.2.1 (Context)

A context is a pair (|Γ|, Γ) with |Γ| : ℕ and Γ : 𝒯|Γ| a chain. We will often denote such a
context by Γ.

♣

Definition F.2.2 (Substitution)

A substitution 𝑓 from Γ to Δ is a monotonous map

|𝑓| : {0, …, |Δ|} → {0, …, |Γ|}

such that |𝑓|(|Δ|), and morphisms 𝑓𝑖 : 𝛾|𝑓|(𝑖) → 𝛿𝑖, such that for every 𝑖, the following
diagram “commutes”

– 𝜔 + 32 –

Appendix F Chain model

Γ|𝑓|(𝑖+1)

𝑓𝑖+1

Δ𝑖+1

Γ|𝑓|(𝑖)+1

𝑓𝑖

𝛾|𝑓|(𝑖+1) 𝛿𝑖+1

𝛾|𝑓|(𝑖+1)−1

𝛾|𝑓|(𝑖)+1

𝛾|𝑓|(𝑖) 𝛿𝑖

⋮

that is, there is a morphism

𝑓•
𝑖+1 : Γ|𝑓|(𝑖+1) ⊗ … ⊗ Γ|𝑓|(𝑖)+1 ⟶ Δ𝑖+1

such that

𝑠(𝑓•
𝑖+1) = 𝑓𝑖+1

𝑡(𝑓•
𝑖+1) = 𝑓𝑖

Note that the 𝑓•
𝑖 are part of the data of 𝑓 .

♣

Let Γ, Δ and Θ be three contexts, and 𝑓 : Γ → Δ and 𝑔 : Δ𝑡 → Θ be two substitutions. We
define their composition as follows:

|𝑔 ∘ 𝑓| = |𝑓| ∘ |𝑔|
(𝑔 ∘ 𝑓)𝑖 = 𝑔𝑖 ∘ 𝑓|𝑔|(𝑖)

Furthermore, each square of the composition commutes, and the composition is commutative,
because we are composing 2-cells as in an fc-multicategory [18], [19].

Definition F.2.3 (Context category)

Let us write ℬ the context category, that is, the category whose objects are contexts, and
with morphisms substitutions.

♣

Definition F.2.4 (Flat context category)

Let ℬ• be the flat context category, the subcategory of ℬ with the same objects, and
morphisms 𝑓 are morphisms in ℬ such that |𝑓|(0) = 0.

♣

– 𝜔 + 33 –

Appendix F Chain model

Definition F.2.5 (Chain target functor)

Let 𝑡̂ : ℬ• → 𝒯 be the chain target functor, defined by

𝑡̂ : ℬ• ⟶ 𝒯
Γ ⟼ 𝛾0

𝑓 ⟼ 𝑓0
♣

Lemma F.2.6

𝑡̂ is a fibration.
♡

Proof. Let Γ be a context, 𝛿 : 𝒯 and 𝑓 : 𝛿 → 𝛾0.

𝑡̂

𝑓

Γ

𝛿 𝛾0

Let us lift 𝑓 by induction on |Γ|.

If |Γ| = 0, then [𝑓]𝑡Γ is just 𝑓 , with Δ = 𝛿

𝑓

𝑡̂ 𝑡̂

𝑓

Δ Γ

𝛿 𝛾0

It is cartesian. Indeed, assume we have a 𝑔 : Θ → Δ. Then |Θ| = |𝑔|(|Δ|) = |𝑔|(0) = 0, so if we
have an ℎ : 𝜃0 → 𝛾0 such that 𝜋(𝑔) = 𝑓 ∘ ℎ, then in fact 𝑔 = 𝑓 ∘ ℎ so ℎ is its own lift.

Otherwise, assume that we have built a cartesian [𝑓]𝑡Δ|𝑛 : Δ → Γ||Γ|−1 and let us extend it to

[𝑓]𝑡Γ : Δ↑ → Γ

We are in the following situation

Γ|Γ|

ℎ

𝛾|Γ|

𝛿|Γ|−1 𝛾|Γ|−1

with ℎ = ([𝑓]𝑡|Γ|−1)|Γ|−1
, so in particular

– 𝜔 + 34 –

Appendix F Chain model

𝑡

ℎ

Γ|Γ|

𝛿|Γ|−1 𝛾|Γ|−1

Because 𝑡 is a fibration, we can lift ℎ as follows

𝑡

[ℎ]𝑡Γ|Γ|

𝑡

ℎ

𝑡−1
ℎ (Γ|Γ|) Γ|Γ|

𝛿|Γ|−1 𝛾|Γ|−1

so we let

𝛿|Γ| = 𝑠(𝑡−1
ℎ (Γ|Γ|))

Δ|Γ| = 𝑡−1
ℎ (Γ|Γ|)

([𝑓]𝑡Γ)
|Γ|

= 𝑠([ℎ]𝑡Γ|Γ|
)

([𝑓]𝑡Γ)
•

|Γ|
= [ℎ]𝑡Γ|Γ|

|[𝑓]𝑡Γ|(|Γ|) = |Γ|

Let us show that this extended morphism is still cartesian. Consider a context Θ, a 𝑔 : Θ → Γ
and a ℎ : 𝜃0 → 𝛿0 such that the following diagram commutes

𝑔0

ℎ

𝑓

𝜃0

𝛿0 𝛾0

Consider a lifting ℎ̂ of ℎ making the following diagram commmute.

– 𝜔 + 35 –

Appendix F Chain model

𝑔

ℎ̂

𝑡̂
[𝑓]𝑡Γ

𝑔0
ℎ

𝑓

𝑡̂̂𝑡 𝑡̂̂𝑡

Θ

Δ↑ Γ

𝜃0

𝛿 𝛾0

note that ̂ℎ is uniquely determined by the data of ̂ℎ||Γ|−1 and ̂ℎ•
|Γ|. But ̂ℎ||Γ|−1 makes the following

diagram commute

𝑔||Γ|−1

ℎ̂||Γ|−1

𝑡̂
[𝑓]𝑡Γ||Γ|−1

𝑔0
ℎ

𝑓

𝑡̂̂𝑡 𝑡̂̂𝑡

Θ||𝑔|(|Γ|−1)

Δ Γ||Γ|−1

𝜃0

𝛿 𝛾0

so it uniquely exists, by cartesianity of [𝑓]𝑡Γ||Γ|−1
. Furthermore, the commutation of the previous

diagram also implies the following two pastings are the same:

Θ|Θ|

𝑔|Γ|

Δ𝑛+𝑘+1

Θ|𝑔|(|Γ|−1)+1

𝑔|Γ|−1

𝑔•
|Γ|

𝜃|Θ| 𝛾|Γ|

⋮

𝜃|𝑔|(|Γ|−1) 𝛾|Γ|−1

and

– 𝜔 + 36 –

Appendix F Chain model

Θ|Θ|

ℎ|Γ|

Δ|Γ|

𝑓|Γ|

Γ|Γ|

Θ|𝑔|(|Γ|−1)+1

ℎ|Γ|−1 𝑓|Γ|−1

ℎ̂•
|Γ|

([𝑓]𝑡Γ)
•

|Γ|

𝜃|Θ| 𝛿|Γ| 𝛾|Γ|

⋮

𝜃|𝑔|(|Γ|−1) 𝛿|Γ|−1 𝛾|Δ|−1

which is equivalent to the commutation of the following diagram

𝑡

ℎ̂•
|Γ|

𝑔•
|Γ|

[ℎ]𝑡Γ|Γ|

ℎ|Γ|+𝑘

𝑔𝑛+𝑘

𝑡𝑡

𝑓𝑛+𝑘

𝑡𝑡

Θ|𝑔|(|Γ|−1)+1 ⊛ … ⊛ Θ|Θ|

Δ|Γ| Γ||Γ|

𝜃|𝑔|(|Γ|−1)

𝛿|Γ|−1 𝛾|Γ|−1

hence, ℎ̂•
|Γ| uniquely exists. Thus, ℎ̂ uniquely exists, showing the cartesianity of [𝑓]𝑡Γ. □

Definition F.2.7

Let 𝜀 : 𝒯 → ℬ• be the section of 𝑡̂ defined by 𝜀(𝛾) = 𝛾.
♣

Definition F.2.8

Let ℬ•
⋆ be the pointed flat context category, whose elements are pointed flat contexts

(Γ, |Γ|), and whose morphisms 𝑓 are pointed substitutions such that |𝑓|(0) = 0.
♣

Lemma F.2.9

The following diagram is a pullback

– 𝜔 + 37 –

Appendix F Chain model

𝑡̂

𝑠

ℬ•
⋆ ℬ•

ℬ• 𝒯
♡

Proof. Immediate. □

Definition F.2.10

Let 𝜇 : ℬ•
⋆ → ℬ• be defined by

𝜇 : ℬ•
⋆ ⟶ ℬ•

(Γ, 𝑛) ⟼ Γ
𝑓 ⟼ 𝑓

♣

Lemma F.2.11

This defines a chain-like structure.
♡

F.3 The pointed context category
Definition F.3.1 (Pointed context)

A pointed context is a pair (Γ, 𝑛) with Γ : ℬ and 𝑛 : {0, …, |Γ|}.
♣

Note that this definition justifies the name pointed context: indeed, a pointed context is a context
with a distinguished degree. As we will see, pointed substitutions are, as we expect, substitutions
that preserve it.

Definition F.3.2 (Pointed substitutions)

A pointed substitution fro (Γ, 𝑛) to (Δ, 𝑚) is a substitution 𝑓 : Γ → Δ such that |𝑓|(𝑚) =
𝑛.

♣

Definition F.3.3 (Pointed context category)

Let ℬ∗ be the pointed context category, the category with objects pointed contexts, and
with morphisms pointed substitutions.

♣

Definition F.3.4 (Global projection)

The global projection 𝜋 is the functor

𝜋 : ℬ∗ ⟶ ℬ
(Γ, 𝑛) ⟼ Γ|𝑛

– 𝜔 + 38 –

Appendix F Chain model

where

(𝛾|Γ| ↠ ⋯ ↠ 𝛾0)|𝑛 = 𝛾𝑛 ↠ ⋯ ↠ 𝛾0

and whose action on morphisms is clear.
♣

Lemma F.3.5

The following diagram is a pullback

𝜋 𝑡̂

𝑠

ℬ∗ ℬ•

ℬ 𝒯
♡

Proof. Immediate. □

Corollary F.3.5.1

𝜋 is a Grothendieck fibration.
♡

Proof. By Proposition A.2.1. □

F.4 Fibered double category structure
Definition F.4.1 (Empty context)

Let ⟨⟩ : ℬ → ℬ∗ be the empty context functor

⟨⟩
𝜀 ∘ 𝑠

idℬ

𝜋 𝑡̂

𝑠

ℬ

ℬ∗ ℬ•

ℬ 𝒯
♣

Definition F.4.2 (Forgetful functor)

The forgetful functor is the functor

– 𝜔 + 39 –

Appendix F Chain model

𝐹 : ℬ∗ ⟶ ℬ
(Γ, 𝑛) ⟼ Γ

𝑓 ⟼ 𝑓
♣

Definition F.4.3 (Context multiplication)

Let us define the functor −, − : ℬ∗ ×ℬ ℬ∗ → ℬ as follows.

Let (Γ, 𝑛) and (Δ, 𝑚) be in ℬ such that 𝜋(Γ, 𝑛) = 𝐹(Δ, 𝑚), that is, Δ = Γ|𝑛. Put

(Δ, 𝑚), (Γ, 𝑛) = (Γ, 𝑚)

For any 𝑓 and 𝑔 such that 𝜋(𝑓) = 𝐹(𝑔), 𝑓, 𝑔 = 𝑓 .
♣

Theorem F.4.4

The following

𝐹 𝜋

ℬ∗

ℬ ℬ

forms a fibered double category, with unit ⟨⟩ and multiplication −, −.
♡

Proof. See Appendix H. □

F.5 The type category
Definition F.5.1 (Chain source functor)

The chain source functor is the functor

𝑠 : ℬ ⟶ 𝒯
Γ ⟼ 𝛾|Γ|

with obvious action on morphisms.
♣

Definition F.5.2 (Type category)

The type category ℰ is defined as the following pullback

– 𝜔 + 40 –

Appendix F Chain model

𝑝

𝜏

𝑡

𝐹 𝑠

ℰ 𝒯

ℬ∗ ℬ 𝒯
♣

Definition F.5.3

Let 𝑞 : ℰ → ℬ∗ be defined by associating to the type ((Γ, 𝑛), 𝐴) the context (Γ.𝐴, 𝑛) where
Γ.𝐴 is

𝐴

Γ|Γ|

Γ1

𝑠(𝐴)

𝛾|Γ|

⋮

𝛾0

and similarly on morphisms.
♣

Definition F.5.4

Let us define a unit 1 : ℬ∗ → ℰ by

1 = ⟨idℬ∗
, 𝑈 ∘ 𝑠 ∘ 𝐹⟩

♣

Definition F.5.5

Let us define a multiplication Σ : ℰ ×ℬ∗
ℰ → ℰ by

Σ(Θ, 𝐴, 𝐵) ≔ (Θ, 𝐴 ⊛ 𝐵)

and similarly for morphisms.
♣

– 𝜔 + 41 –

Appendix F Chain model

Theorem F.5.6

The following

𝑞 𝑝

ℰ

ℬ∗ ℬ∗

is a fibered double category.
♡

Proof. See Appendix I □

– 𝜔 + 42 –

Appendix G Proof of Proposition 3.2.5

G Proof of Proposition 3.2.5
Proof. Let 𝑓 : 𝑋 → 𝑌 be a morphism in ℰ , 𝑅 : 𝑡−1

𝑌 and 𝑆 : 𝑡−1
𝑠(𝑅). We want to show that

([𝑓]𝑡𝑅, [𝑓𝑅]𝑡
𝑆
) is a cartesian morphism. Consider the following situation, with 𝑍 : ℰ , 𝑇 : 𝑡−1

𝑍 ,
𝑈 : 𝑡−1

𝑠(𝑇), 𝑔 : 𝑇 → 𝑅 and ℎ : 𝑈 → 𝑆 two morphisms in ℰ such that 𝑡(ℎ) = 𝑠(𝑔). Let 𝑖 : 𝑇 → 𝑋
such that the following diagram commutes

𝑡 ∘ 𝜋1

(𝑔, ℎ)

([𝑓]𝑡𝑅, [𝑓𝑅]𝑡
𝑆
)

𝑡 ∘ 𝜋1

𝑡(𝑔)
𝑖

𝑡 ∘ 𝜋1𝑡 ∘ 𝜋1

𝑓

(𝑇 , 𝑈)

(𝑡−1
𝑓 (𝑅), 𝑡−1

𝑓𝑅(𝑆)) (𝑅, 𝑆)

𝑍

𝑋 𝑌

In particular, by cartesianity of [𝑓]𝑡𝑅, there exists a unique 𝑖1 : 𝑇 → 𝑡−1
𝑓 (𝑅) making the following

diagram commute

𝑖1
𝑔

𝑡
[𝑓]𝑡𝑅

𝑡
𝑖

𝑡(𝑔)

𝑡𝑡

𝑓

𝑇

𝑡−1
𝑓 (𝑅) 𝑅

𝑍

𝑋 𝑌

Furthermore, if we take the image of the top diagram by 𝑠, we have that the following diagram
commutes

𝑠(ℎ1)

𝑠(𝑔)

𝑠([𝑓]𝑡𝑅)

𝑠(𝑇)

𝑠(𝑡−1
𝑓 (𝑅)) 𝑠(𝑅)

Since [𝑓𝑅]
𝑆
 is cartesian, and because 𝑡(ℎ) = 𝑠(𝑔) and 𝑓𝑅 = 𝑠([𝑓]𝑅), we have that there exists

a unique 𝑖2 : 𝑈 → 𝑡−1
𝑓𝑅(𝑆) making the following diagram commute

– 𝜔 + 43 –

Appendix G Proof of Proposition 3.2.5

ℎ

𝑡

𝑖2

[𝑓𝑅]
𝑆

𝑡𝑡(ℎ)
𝑠(𝑖1)

𝑡

𝑓𝑅

𝑈

𝑡−1
𝑓𝑅(𝑆) 𝑆

𝑠(𝑇)

𝑠(𝑡−1
𝑓 (𝑅)) 𝑠(𝑆)

Hence, we have the following:
• 𝑡(𝑖2) = 𝑠(𝑖1), hence (𝑖1, 𝑖2) is a morphism in ℰ ;
• (𝑡 ∘ 𝜋1)(𝑖1, 𝑖2) = 𝑡(𝑖1) = 𝑖, so (ℎ1, ℎ2) lives above ℎ;
• (𝑔, ℎ) = ([𝑓]𝑡𝑅, [𝑓𝑅]𝑡

𝑆
) ∘ (𝑖1, 𝑖2) by construction.

So indeed, we have found a morphism that makes the following diagram commute.

𝑡 ∘ 𝜋1

(𝑔, ℎ)

(𝑖1, 𝑖2)

([𝑓]𝑡𝑅, [𝑓𝑅]𝑡
𝑆
)

𝑡 ∘ 𝜋1

𝑡(𝑔)
𝑖

𝑡 ∘ 𝜋1𝑡 ∘ 𝜋1

𝑓

(𝑇 , 𝑈)

(𝑡−1
𝑓 (𝑅), 𝑡−1

𝑓𝑅(𝑆)) (𝑅, 𝑆)

𝑍

𝑋 𝑌

Now, let’s show the unicity. Suppose we have some (𝑗1, 𝑗2) : (𝑇 , 𝑈) → (𝑡−1
𝑓 (𝑅), 𝑡−1

𝑓𝑅(𝑆)) making
the latter diagram commute. Then, by projecting with 𝑡, 𝑗1 satisfies the same universal property
as 𝑖1, so 𝑗1 = 𝑖1, and, using that, and by projecting with 𝑠, 𝑗2 satisfies the same universaly
property as 𝑖2, so 𝑗2 = 𝑖2, and so

(𝑗1, 𝑗2) = (𝑖1, 𝑖2)

 □

– 𝜔 + 44 –

Appendix H Proof of Theorem F.4.4

H Proof of Theorem F.4.4
Lemma H.1

The global projection 𝜋 is a fibration.
♡

Proof. By Proposition A.2.1. □

Lemma H.2

The following diagrams commute

⟨⟩

idℬ
𝜋

ℬ ℬ∗

ℬ

⟨⟩

idℬ
𝐹

ℬ ℬ∗

ℬ
♡

Proof. Immediate. □

Lemma H.3

⟨⟩ : idℬ → 𝜋 is a fibration morphism.
♡

Proof. By Lemma F.1.3. □

Lemma H.4

The following diagram commutes

𝜋 𝐹

−, −

𝜋1 𝜋2

𝜋 𝐹 𝜋 𝐹

ℬ∗

ℬ∗ ×ℬ ℬ∗

ℬ∗ ℬ∗

ℬ ℬ ℬ
♡

Proof. Consider (Δ, 𝑛, 𝑚) in ℬ∗ ×ℬ ℬ∗. For the left triangle, we have

– 𝜔 + 45 –

Appendix H Proof of Theorem F.4.4

𝜋((Δ|𝑚, 𝑛), (Δ, 𝑚)) = 𝜋(Δ, 𝑛)
= Δ|𝑛
= 𝜋(Δ|𝑚, 𝑛)

For the right triangle, we have

𝐹((Δ|𝑚, 𝑛), (Δ, 𝑚)) = 𝐹(Δ, 𝑛)
= Δ
= 𝐹(Δ, 𝑚)

commutation for morphisms is just as easy. □

Lemma H.5

The multiplication is associative
♡

Proof. Immediate. □

Lemma H.6

The multiplication is a fibration morphism −, − : 𝜋 ∘ 𝜋1 → 𝜋.
♡

Proof. Consider a morphism (𝑓, 𝑔) : (Δ, 𝑛, 𝑚) → (Δ′, 𝑛′, 𝑚′) in ℬ∗ ×ℬ ℬ∗, that is, 𝐹(𝑓) =
𝜋(𝑔), ie. 𝑓 = 𝑔|𝑚′ . Suppose (𝑓, 𝑔) is cartesian. We want to show that 𝑓, 𝑔 = 𝑔 is also 𝜋-carte-
sian. Suppose given 𝛼 : (Θ, 𝑘) → (Δ′, 𝑛′) and ℎ : Θ|𝑘 → Δ′|𝑛′ such that the following diagram
commutes, and consider an ℎ̂ : (Δ, 𝑘) → (Δ, 𝑛) making the following diagram commute

𝛼

𝜋

ℎ̂

𝑔

𝜋𝛼|𝑛′

ℎ

𝑔|𝑛′

𝜋𝜋

(Θ, 𝑘)

(Δ, 𝑛) (Δ′, 𝑛′)

Θ|𝑘

Δ|𝑛 Δ′|𝑛′

Then we have

|ℎ̂|(𝑚) = |ℎ̂|(|𝑔|(𝑚′))
= |𝛼|(𝑚′)

so such an ℎ̂ is exactly one making the following diagram commute

– 𝜔 + 46 –

Appendix H Proof of Theorem F.4.4

(𝛼|𝑚′ , 𝛼)

𝜋 ∘ 𝜋1

(ℎ̂|𝑚, ℎ̂)

(𝑓, 𝑔)

𝜋 ∘ 𝜋1
𝛼|𝑛′

ℎ

𝑔|𝑛′

𝜋 ∘ 𝜋1𝜋 ∘ 𝜋1

(Θ, 𝑘, |𝛼|(𝑚′))

(Δ, 𝑛, 𝑚) (Δ′, 𝑛′, 𝑚′)

Θ|𝑘

Δ|𝑛 Δ′|𝑛′

so it exists and is unique, by cartesianity of (𝑓, 𝑔). □

Lemma H.7

The following two diagrams commute

ℬ∗ ×ℬ ⟨⟩

𝜋1
−, −

ℬ∗ ×ℬ ℬ ℬ∗ ×ℬ ℬ∗

ℬ∗

⟨⟩ ×ℬ ℬ∗

𝜋2
−, −

ℬ ×ℬ ℬ∗ ℬ∗ ×ℬ ℬ∗

ℬ∗
♡

Proof. Immediate. □

– 𝜔 + 47 –

Appendix I Proof of Theorem F.5.6

I Proof of Theorem F.5.6
Lemma I.1

𝑝 is a fibration.
♡

Proof. By Proposition A.2.1, because 𝑡 is a fibration. □

Lemma I.2

The following diagrams commute

ℰ ×ℬ∗
1

𝜋1 Σ

ℰ ×ℬ∗
ℬ∗ ℰ ×ℬ∗

ℰ

ℰ

1 ×ℬ∗
ℰ

𝜋2 Σ

ℬ∗ ×ℬ∗
ℰ ℰ ×ℬ∗

ℰ

ℰ
♡

Proof. Immediate. □

Lemma I.3

The following diagram commutes

𝑝 𝑞

Σ

𝜋1 𝜋2

𝑝 𝑞 𝑝 𝑞

ℰ

ℰ ×ℬ∗
ℰ

ℰ ℰ

ℬ∗ ℬ∗ ℬ∗
♡

Proof.

 □

– 𝜔 + 48 –

Appendix J Proof of Theorem A.3.1

J Proof of Theorem A.3.1
Definition J.1 (Category of fibrations)

For a base category ℬ, define Fibℬ as the category of fibrations over ℬ, that is, whose
objects are pairs (ℰ, 𝑝) with ℰ a category and 𝑝 : ℰ → ℬ a fibration.

Given two fibrations 𝑝𝑖 : ℰ𝑖 → ℬ over ℬ for 𝑖 = 1, 2, a morphism of fibrations between 𝑝1
and 𝑝2 is a functor 𝐹 : ℰ1 → ℰ2 making the following diagram commute

𝐹

𝑝1 𝑝2

idℬ

ℰ1 ℰ2

ℬ ℬ

and which preserves cartesianity of morphisms.
♣

Definition J.2 (Category of pseudofunctors)

For a given base category ℬ, define Pfctℬ as the category whose elements are contravariant
pseudo-functors 𝒫 : ℬop → Cat in Cat, that is,
• for each object 𝑋 : ℬ, a category 𝒫𝑋;
• for each morphism 𝑓 : 𝑋 → 𝑌 in ℬ, a functor 𝒫𝑓 : 𝒫𝑌 → 𝒫𝑋;
• for each object 𝑋 : ℬ, a natural isomorphism

𝑖𝑋 : 𝒫id𝑋
⟹ id𝒫𝑋

called the pseudo unit of 𝒫 at 𝑋;
• for each morphisms 𝑓 : 𝑋 → 𝑌 and 𝑔 : 𝑌 → 𝑍 in ℬ, a natural isomorphism

𝑐𝑓,𝑔 : 𝒫𝑔∘𝑓 ⟹ 𝒫𝑓 ∘ 𝒫𝑔

called the pseudo composition law of 𝒫 at 𝑓 and 𝑔.
♣

We additionally require the following coherence conditions: for 𝑓 : 𝑋 → 𝑌 , the following
diagram commutes

𝑐𝑓, id𝑌

𝑐id𝑋,𝑓

id𝒫𝑓 𝒫𝑓 ∘ 𝑖𝑌

𝑖𝑋 ∘ 𝒫𝑓

𝒫𝑓 𝒫𝑓 ∘ 𝒫id𝑌

𝒫id𝑋
∘ 𝒫𝑓 𝒫𝑓

Furthermore, for 𝑓 : 𝑊 → 𝑋, 𝑔 : 𝑋 → 𝑌 and ℎ : 𝑌 → 𝑍, the following diagram commutes

– 𝜔 + 49 –

Appendix J Proof of Theorem A.3.1

𝑐𝑓,ℎ∘𝑔

𝑐𝑔∘𝑓,ℎ 𝒫𝑓 ∘ 𝑐𝑔,ℎ

𝑐𝑓,𝑔 ∘ 𝒫ℎ

𝒫ℎ∘𝑔∘𝑓 𝒫𝑓 ∘ 𝒫ℎ∘𝑔

𝒫𝑔∘𝑓 ∘ 𝒫ℎ 𝒫𝑓 ∘ 𝒫𝑔 ∘ 𝒫ℎ

Given two pseudofunctors 𝒫 and 𝒫′, a morphism 𝜈 : 𝒫 → 𝒫′ is a pseudonatural transformation
between 𝒫 and 𝒫′, that is, for each point 𝑋 : ℬ, a functor 𝜈𝑋 : 𝒫𝑋 → 𝒫′

𝑋 and, for each morphism
𝑓 : 𝑋 → 𝑌 in ℬ, a natural isomorphism

𝜈𝑌

𝒫𝑓 𝒫′
𝑓

𝜈𝑓

𝜈𝑋

𝒫𝑌 𝒫′
𝑌

𝒫𝑋 𝒫′
𝑋

satisfying the following coherence conditions:

• for 𝑋 : ℬ, the following pasting is 𝜈𝑋

𝒫id𝑋

𝜈𝑋

id𝒫𝑋
𝒫′

id𝑋

𝜈id𝑋 id𝒫′
𝑋

𝜈𝑋

𝑖𝑋 𝑖−1
𝑋

𝒫𝑋 𝒫′
𝑋

𝒫𝑋 𝒫′
𝑋

that is,

(𝜈𝑋 ∘ 𝑖𝑋) ∘ 𝜈id𝑋
∘ (𝑖′−1

𝑋 ∘ 𝜈𝑋) = id𝜈𝑋

• if 𝑓 : 𝑋 → 𝑌 and 𝑔 : 𝑌 → 𝑍 are two morphisms in ℬ, 𝜈𝑔∘𝑓 is obtained by pasting the squares
(plus pseudo-composition)

𝜈𝑍

𝒫𝑔

𝒫𝑔∘𝑓

𝒫′
𝑔

𝜈𝑔

𝒫′
𝑔∘𝑓

𝜈𝑌

𝒫𝑓 𝒫′
𝑓

𝜈𝑓

𝜈𝑋

𝑐′
𝑓,𝑔𝑐−1

𝑓,𝑔

𝒫𝑍 𝒫′
𝑍

𝒫𝑌 𝒫′
𝑌

𝒫𝑋 𝒫′
𝑋

– 𝜔 + 50 –

Appendix J Proof of Theorem A.3.1

that is,

𝜈𝑔∘𝑓 = (𝜈𝑋 ∘ 𝑐−1
𝑓,𝑔) ∘ (𝜈𝑓 ∘ 𝒫𝑔) ∘ (𝒫′

𝑓 ∘ 𝜈𝑔) ∘ (𝑐′
𝑓,𝑔 ∘ 𝜈𝑍)

We aim at proving that for a given base category ℬ, we have

Fibℬ ≅ Pfctℬ

In order to do so, we will build in Appendix J.1 half of the equivalence, namely,

Φ : Fibℬ → Pfctℬ

and, in Appendix J.2, the other half of the equivalence, namely,

Ψ : Pfctℬ → Fibℬ

In Appendix J.3, we will show that the two form the two halves of an equivalence, finishing
the proof.

J.1 Fiber functor
Let’s build

Φ : Fibℬ → Pfctℬ

J.1.1 Action of Φ on objects
Assume we have a fibration 𝑝.

J.1.1.1 Definition of the fibre pseudo-functor
Let us build 𝑝−1 : ℬop → Cat a pseudo-functor. For 𝑋 : ℬ,

𝑝−1
𝑋 = {𝑅 : ℰ | 𝑅 ⊏ 𝑋}

𝑝−1
𝑋 (𝑆, 𝑅) = {𝛼 : 𝑆 → 𝑅 | 𝑝(𝛼) = id𝑋}

Let 𝑋, 𝑌 : ℬ and 𝑓 : 𝑋 → 𝑌 . Let’s define 𝑝−1
𝑓 : 𝑝−1

𝑌 → 𝑝−1
𝑋 by noticing that, for each 𝑅 : 𝑝−1

𝑌 ,
by the fibration condition on 𝑝, there exists a cartesian morphism [𝑓]𝑅

[𝑓]𝑅

𝑓

𝑝−1
𝑓 (𝑅) 𝑅

𝑋 𝑌

Furthermore, for 𝑅, 𝑅′ : 𝑝−1
𝑌 and 𝑔 : 𝑅 → 𝑅′, we have the following diagram

– 𝜔 + 51 –

Appendix J Proof of Theorem A.3.1

[𝑓]𝑅′

[𝑓]𝑅

𝑔

𝑓

𝑝−1
𝑓 (𝑅′) 𝑅′

𝑝−1
𝑓 (𝑅) 𝑅

𝑋 𝑌

By cartesianity of 𝜄𝑅′ , there exists a unique 𝑝−1
𝑓 (𝑔) : 𝑝−1

𝑓 (𝑅) → 𝑝−1
𝑓 (𝑅′) st

𝑝(𝑝−1
𝑓 (𝑔)) = id𝑋

[𝑓]𝑅′ ∘ 𝑝−1
𝑓 (𝑔) = 𝑔 ∘ [𝑓]𝑅

ie. the following diagram commutes

[𝑓]𝑅′

𝑝−1
𝑓 (𝑔)

[𝑓]𝑅

𝑔

𝑓

𝑝−1
𝑓 (𝑅′) 𝑅′

𝑝−1
𝑓 (𝑅) 𝑅

𝑋 𝑌

Let us indeed check that this defines a functor. For any 𝑅 : 𝑝−1
𝑌 , note that

[𝑓]𝑅

id𝑝−1
𝑓 (𝑅)

[𝑓]𝑅

id𝑅

𝑓

𝑝−1
𝑓 (𝑅) 𝑅

𝑝−1
𝑓 (𝑅) 𝑅

𝑋 𝑌

id𝑝−1
𝑓 (𝑅) satisfies the universal property of 𝑝−1

𝑓 (id𝑅), so we have

– 𝜔 + 52 –

Appendix J Proof of Theorem A.3.1

𝑝−1
𝑓 (id𝑅) = id𝑝−1

𝑓 (𝑅)

Let now 𝑅, 𝑅′, 𝑅″ : 𝑝−1
𝑌 , 𝑔 : 𝑅 → 𝑅′ and 𝑔′ : 𝑅′ → 𝑅″.

[𝑓]𝑅″

𝑝−1
𝑓 (𝑔′)

[𝑓]𝑅′

𝑔′

𝑝−1
𝑓 (𝑔)

[𝑓]𝑅

𝑔

𝑓

𝑝−1
𝑓 (𝑅″) 𝑅″

𝑝−1
𝑓 (𝑅′) 𝑅′

𝑝−1
𝑓 (𝑅) 𝑅

𝑋 𝑌

Note that 𝑝−1
𝑓 (𝑔′) ∘ 𝑝−1

𝑓 (𝑔) satisfies the universal property of 𝑝−1
𝑓 (𝑔′ ∘ 𝑔), so we have

𝑝−1
𝑓 (𝑔′ ∘ 𝑔) = 𝑝−1

𝑓 (𝑔′) ∘ 𝑝−1
𝑓 (𝑔)

Let us now show that 𝑝−1 indeed defines a pseudo-functor.

J.1.1.2 Pseudo identity law
For 𝑋 : ℬop, let us first exhibit a natural isomorphism 𝑝−1

id𝑋
⇒̃ id𝑋. For 𝑅 : 𝑝−1

𝑋 , we have [id𝑋]𝑅 :
𝑝−1

id𝑋
(𝑅) → id𝑋(𝑅). This defines a natural transformation. Indeed, for 𝑅, 𝑅′ : 𝑝−1

𝑋 and 𝑓 : 𝑅 →
𝑅′, the following diagram commutes by definition of 𝑝−1

id𝑋
(𝑓):

[id𝑋]𝑅′

𝑝−1
id𝑋

(𝑓)

[id𝑋]𝑅

𝑓

id𝑋

𝑝−1
id𝑋

(𝑅′) 𝑅′

𝑝−1
id𝑋

(𝑅) 𝑅

𝑋 𝑋

So in particular the upper square commutes

– 𝜔 + 53 –

Appendix J Proof of Theorem A.3.1

[id𝑋]𝑅

𝑝−1
id𝑋

(𝑓) 𝑓

[id𝑋]𝑅′

𝑝−1
id𝑋

(𝑅) 𝑅

𝑝−1
id𝑋

(𝑅′) 𝑅′

hence [id𝑋] is natural. Let’s show that each component is an isomorphism.

There is a unique morphism 𝜑 : 𝑅 → 𝑝−1
id𝑋

(𝑅) making the following diagram commute

id𝑅

𝜑

[id𝑋]𝑅

id𝑋

𝑅

𝑝−1
id𝑋

(𝑅) 𝑅

𝑋 𝑋

So

[id𝑋]𝑅 ∘ 𝜑 = id𝑅

Furthermore, the following diagram commutes

[id𝑋]𝑅[id𝑋]𝑅

𝜑
id𝑅

[id𝑋]𝑅

id𝑋

𝑝−1
id𝑋

(𝑅)

𝑅

𝑝−1
id𝑋

(𝑅) 𝑅

𝑋 𝑋

Meaning that 𝜑 ∘ [id𝑋]𝑅 satisfies the universal property of [id𝑋]𝑅 with respect to [id𝑋]𝑅. But
so does the identity, so, by unicity, we have

𝜑 ∘ [id𝑋]𝑅 = id𝑝−1
id𝑋

(𝑅)

– 𝜔 + 54 –

Appendix J Proof of Theorem A.3.1

Hence [id𝑋]𝑅 is an iso.

J.1.1.3 Pseudo-composition law

Lemma J.1.1 (Pseudo-composition law)

Let 𝑋, 𝑌 , 𝑍 : ℬ, and 𝑓 : 𝑋 → 𝑌 , 𝑔 : 𝑌 → 𝑍. There is a natural isomorphism

[𝑓, 𝑔] : 𝑝−1
𝑔∘𝑓 ⟹ 𝑝−1

𝑓 ∘ 𝑝−1
𝑔

♡

Proof. Let 𝑅 : 𝑝−1
𝑍 , and consider the following diagram

[𝑔 ∘ 𝑓]𝑅

[𝑓]𝑝−1
𝑔 (𝑅) [𝑔]𝑅

𝑓 𝑔

𝑝−1
𝑔∘𝑓(𝑅)

𝑝−1
𝑓 (𝑝−1

𝑔 (𝑅)) 𝑝−1
𝑔 (𝑅) 𝑅

𝑋 𝑌 𝑍

The fact that [𝑔 ∘ 𝑓]𝑅 is cartesian gives a unique morphism ℎ : 𝑝−1
𝑓 (𝑝−1

𝑔 (𝑅)) → 𝑝−1
𝑔∘𝑓(𝑅) making

the diagram commute:

[𝑔 ∘ 𝑓]𝑅

ℎ

[𝑓]𝑝−1
𝑔 (𝑅) [𝑔]𝑅

𝑓 𝑔

𝑝−1
𝑔∘𝑓(𝑅)

𝑝−1
𝑓 (𝑝−1

𝑔 (𝑅)) 𝑝−1
𝑔 (𝑅) 𝑅

𝑋 𝑌 𝑍

Conversely, the cartesianity of [𝑔]𝑅, and then [𝑓]𝑝−1
𝑔 (𝑅) gives ℎ′ : 𝑝−1

𝑔∘𝑓(𝑅) → 𝑝−1
𝑔 (𝑅), then [𝑓, 𝑔]𝑅 :

𝑝−1
𝑔∘𝑓(𝑅) → 𝑝−1

𝑓 (𝑝−1
𝑔 (𝑅)) making the following commute

– 𝜔 + 55 –

Appendix J Proof of Theorem A.3.1

[𝑓, 𝑔]𝑅
ℎ′

[𝑔 ∘ 𝑓]𝑅

[𝑓]𝑝−1
𝑔 (𝑅) [𝑔]𝑅

𝑓 𝑔

𝑝−1
𝑔∘𝑓(𝑅)

𝑝−1
𝑓 (𝑝−1

𝑔 (𝑅)) 𝑝−1
𝑔 (𝑅) 𝑅

𝑋 𝑌 𝑍

In particular, [𝑓, 𝑔]𝑅 and ℎ must be each other’s inverse. We have to show that this construction
is natural. Let 𝑅, 𝑅′ : 𝑝−1

𝑍 and ℎ : 𝑅 → 𝑅′. We want to show that the following diagram
commutes

[𝑓, 𝑔]𝑅

𝑝−1
𝑔∘𝑓(ℎ) 𝑝−1

𝑓 (𝑝−1
𝑔 (ℎ))

[𝑓, 𝑔]𝑅′

𝑝−1
𝑔∘𝑓(𝑅) 𝑝−1

𝑓 (𝑝−1
𝑔 (𝑅))

𝑝−1
𝑔∘𝑓(𝑅′) 𝑝−1

𝑓 (𝑝−1
𝑔 (𝑅′))

Note that in the following diagram

[𝑓, 𝑔]𝑅′

[𝑔 ∘ 𝑓]𝑅′𝑝−1
𝑔∘𝑓(ℎ)

[𝑓, 𝑔]𝑅 [𝑓]𝑝−1
𝑔 (𝑅′) [𝑔]𝑅′

[𝑓]𝑝−1
𝑔 (𝑅)[𝑓]𝑝−1
𝑔 (𝑅)

𝑝−1
𝑓 (𝑝−1

𝑔 (ℎ))𝑝−1
𝑓 (𝑝−1

𝑔 (ℎ))

[𝑔]𝑅[𝑔]𝑅
𝑝−1

𝑔 (ℎ) ℎ

[𝑔 ∘ 𝑓]𝑅[𝑔 ∘ 𝑓]𝑅

𝑓 𝑔

id𝑋

𝑓 𝑔

id𝑌

id𝑍

𝑝−1
𝑔∘𝑓(𝑅′)

𝑝−1
𝑔∘𝑓(𝑅′)

𝑝−1
𝑓 (𝑝−1

𝑔 (𝑅′)) 𝑝−1
𝑔 (𝑅′) 𝑅′

𝑝−1
𝑓 (𝑝−1

𝑔 (𝑅)) 𝑝−1
𝑔 (𝑅) 𝑅

𝑋 𝑌 𝑍

𝑋 𝑌 𝑍

𝑝−1
𝑔∘𝑓(ℎ) is the unique solution to the universal problem of living in the fiber above 𝑋 and making

the top-most square commute. Hence, to prove that

[𝑓, 𝑔]𝑅′ ∘ 𝑝−1
𝑔∘𝑓(ℎ) = 𝑝−1

𝑓 (𝑝−1
𝑔 (ℎ)) ∘ [𝑓, 𝑔]𝑅

it suffices to show that [𝑓, 𝑔]−1
𝑅′ ∘ 𝑝−1

𝑓 (𝑝−1
𝑔 (ℎ)) ∘ [𝑓, 𝑔]𝑅 also satisfies this universal property. Each

of these three morphisms lives in the fiber above 𝑋, so so does their composition. Furthermore,

– 𝜔 + 56 –

Appendix J Proof of Theorem A.3.1

[𝑔 ∘ 𝑓]𝑅′ ∘ [𝑓, 𝑔]−1
𝑅′ ∘ 𝑝−1

𝑓 (𝑝−1
𝑔 (ℎ)) ∘ [𝑓, 𝑔]𝑅 = [𝑔]𝑅′ ∘ [𝑓]𝑝−1

𝑔 (𝑅′) ∘ 𝑝−1
𝑓 (𝑝−1

𝑔 (ℎ)) ∘ [𝑓, 𝑔]𝑅 by definition of [𝑓, 𝑔]𝑅′

= [𝑔]𝑅′ ∘ 𝑝−1
𝑔 (ℎ) ∘ [𝑓]𝑝−1

𝑔 (𝑅) ∘ [𝑓, 𝑔]𝑅 by definition of 𝑝−1
𝑓 (𝑝−1

𝑔 (ℎ))

= ℎ ∘ [𝑔]𝑅 ∘ [𝑓]𝑝−1
𝑔 (𝑅) ∘ [𝑓, 𝑔]𝑅 by definition of 𝑝−1

𝑔 (ℎ)

= ℎ ∘ [𝑔 ∘ 𝑓]𝑅 by definition of [𝑓, 𝑔]𝑅

 □

J.1.1.4 Identity/composition coherence
Let 𝑋, 𝑌 : ℬ and 𝑓 : 𝑋 → 𝑌 We have to check that the following diagram commutes

[𝑓, id𝑌]

[id𝑋, 𝑓]
id𝑝−1

𝑓
𝑝−1

𝑓 ∘ [id𝑌]

[id𝑋] ∘ 𝑝−1
𝑓

𝑝−1
𝑓 𝑝−1

𝑓 ∘ 𝑝−1
id𝑌

𝑝−1
id𝑋

∘ 𝑝−1
𝑓 𝑝−1

𝑓

Let’s show that each triangle commutes independently.

J.1.1.4.1 Upper triangle
Let 𝑅 : 𝑝−1

𝑌 . We have to check the commutation of the following diagram

[𝑓, id𝑌]𝑅

id𝑝−1
𝑓 (𝑅)

𝑝−1
𝑓 ([id𝑌]𝑅)

𝑝−1
𝑓 (𝑅) 𝑝−1

𝑓 (𝑝−1
id𝑌

(𝑅))

𝑝−1
𝑓 (𝑅)

By definition of [𝑓, id𝑌], the following diagram commutes

[𝑓]𝑅

[𝑓, id𝑌]𝑅

[𝑓]𝑝−1
id𝑌

(𝑅) [id𝑌]𝑅

𝑓 id𝑌

𝑝−1
𝑓 (𝑅)

𝑝−1
𝑓 (𝑝−1

id𝑌
(𝑅)) 𝑝−1

id𝑌
(𝑅) 𝑅

𝑋 𝑌 𝑌

and we also have

– 𝜔 + 57 –

Appendix J Proof of Theorem A.3.1

[𝑓]𝑅

𝑝−1
𝑓 ([id𝑌]𝑅)

[𝑓]𝑝−1
id𝑌

(𝑅)

[id𝑌]𝑅

𝑓

𝑝−1
𝑓 (𝑅) 𝑅

𝑝−1
𝑓 (𝑝−1

id𝑌
(𝑅)) 𝑅

𝑋 𝑌

Hence, by stitching the two together, we have that the following diagram commutes

[𝑓]𝑅
[𝑓, id𝑌]𝑅

𝑝−1
𝑓 ([id𝑌]𝑅)

[𝑓]𝑅

𝑓

𝑝−1
𝑓 (𝑅)

𝑝−1
𝑓 (𝑝−1

id𝑌
(𝑅))

𝑝−1
𝑓 (𝑅) 𝑅

𝑋 𝑌

By cartesianity of [𝑓]𝑅, 𝑝−1
𝑓 ([id𝑌]𝑅) ∘ [𝑓, id𝑌]𝑅 is unique making this diagram commute; but

since so does id𝑝−1
𝑓 (𝑅), we must have

𝑝−1
𝑓 ([id𝑌]𝑅) ∘ [𝑓, id𝑌]𝑅 = id𝑝−1

𝑓 (𝑅)

J.1.1.4.2 Lower triangle
Let 𝑅 : 𝑝−1

𝑌 . We have to show the commutation of the following diagram

id𝑝−1
𝑓 (𝑅)

[id𝑋, 𝑓]𝑅

[id𝑋]𝑝−1
𝑓 (𝑅)

𝑝−1
𝑓 (𝑅)

𝑝−1
id𝑋

(𝑝−1
𝑓 (𝑅)) 𝑝−1

𝑓 (𝑅)

By definition of [id𝑋, 𝑓], the following diagram commutes

– 𝜔 + 58 –

Appendix J Proof of Theorem A.3.1

[𝑓]𝑅

[id𝑋, 𝑓]𝑅

[id𝑋]𝑝−1
𝑓 (𝑅) [𝑓]𝑅

id𝑋 𝑓

𝑝−1
𝑓 (𝑅)

𝑝−1
id𝑋

(𝑝−1
𝑓 (𝑅)) 𝑝−1

𝑓 (𝑅) 𝑅

𝑋 𝑋 𝑌

but, by cartesianity of [𝑓]𝑅, [id𝑋]𝑝−1
𝑓 (𝑅) ∘ [id𝑋, 𝑓]𝑅 is unique making this diagram commute.

Because id𝑝−1
𝑓 (𝑅) also makes it commute, we must have

[id𝑋]𝑝−1
𝑓 (𝑅) ∘ [id𝑋, 𝑓]𝑅 = id𝑝−1

𝑓 (𝑅)

J.1.1.5 Composition/composition coherence
Let 𝑊, 𝑋, 𝑌 , 𝑍 : ℬ and

𝑓 𝑔 ℎ
𝑊 𝑋 𝑌 𝑍

Let 𝑅 : 𝑝−1
𝑍 , we want to show that the following diagram commutes

[𝑓, ℎ ∘ 𝑔]𝑅

[𝑔 ∘ 𝑓, ℎ]𝑅 𝑝−1
𝑓 ([𝑔, ℎ]𝑅)

[𝑓, 𝑔]𝑝−1
ℎ (𝑅)

𝑝−1
ℎ∘𝑔∘𝑓(𝑅) 𝑝−1

𝑓 (𝑝−1
ℎ∘𝑔(𝑅))

𝑝−1
𝑔∘𝑓(𝑝−1

ℎ (𝑅)) 𝑝−1
𝑓 (𝑝−1

𝑔 (𝑝−1
ℎ (𝑅)))

It suffices to show that [𝑓, 𝑔]−1
𝑝−1

ℎ (𝑅) ∘ 𝑝−1
𝑓 ([𝑔, ℎ]𝑅) ∘ [𝑓, ℎ ∘ 𝑔]𝑅 satisfies the universaly property of

[𝑔 ∘ 𝑓, ℎ]𝑅, that is, the following diagram commutes

[ℎ ∘ 𝑔 ∘ 𝑓]𝑅

[𝑓, ℎ ∘ 𝑔]𝑅

𝑝−1
𝑓 ([𝑔, ℎ]𝑅)

[ℎ]𝑅

[𝑓, 𝑔]−1
𝑝−1

ℎ (𝑅)

[𝑔 ∘ 𝑓]𝑝−1
ℎ (𝑅)

𝑝−1
ℎ∘𝑔∘𝑓(𝑅) 𝑅

𝑝−1
𝑓 (𝑝−1

ℎ∘𝑔(𝑅)) 𝑝−1
ℎ (𝑅)

𝑝−1
𝑓 (𝑝−1

𝑔 (𝑝−1
ℎ (𝑅))) 𝑝−1

𝑔∘𝑓(𝑝−1
ℎ (𝑅))

– 𝜔 + 59 –

Appendix J Proof of Theorem A.3.1

In the following diagram, each inner diagram commutes, hence the outermost diagram commutes

[ℎ ∘ 𝑔 ∘ 𝑓]𝑅

[𝑓, ℎ ∘ 𝑔]𝑅

[𝑓]𝑝−1
ℎ∘𝑔(𝑅)

𝑝−1
𝑓 ([𝑔, ℎ]𝑅)

[ℎ ∘ 𝑔]𝑅

[𝑔, ℎ]𝑅

id𝑊

[𝑓]𝑝−1
𝑔 (𝑝−1

ℎ (𝑅)) [𝑔]𝑝−1
ℎ (𝑅)

[ℎ]𝑅

𝑓

id𝑊 id𝑋

[𝑔 ∘ 𝑓]𝑝−1
ℎ (𝑅)

[𝑓, 𝑔]−1
𝑝−1

ℎ (𝑅)[𝑓, 𝑔]−1
𝑝−1

ℎ (𝑅)

𝑓

id𝑊

𝑔

ℎ

𝑔 ∘ 𝑓

𝑝−1
ℎ∘𝑔∘𝑓(𝑅)

𝑝−1
𝑓 (𝑝−1

ℎ∘𝑔(𝑅)) 𝑝−1
ℎ∘𝑔(𝑅) 𝑅

𝑊 𝑝−1
𝑓 (𝑝−1

𝑔 (𝑝−1
ℎ (𝑅))) 𝑝−1

𝑔 (𝑝−1
ℎ (𝑅)) 𝑝−1

ℎ (𝑅)

𝑊 𝑋 𝑝−1
𝑔∘𝑓(𝑝−1

ℎ (𝑅)) 𝑍

𝑊 𝑋 𝑌

𝑊

which is exactly what we wanted.

We can therefore define

Φ(𝑝) = 𝑝−1

J.1.2 Action of Φ on morphisms
Let 𝑝 : ℰ1 → ℬ and 𝑞 : ℰ2 → ℬ be two fibrations, and 𝐹 : 𝑝 → 𝑞 be a morphism

𝐹

𝑝 𝑞

idℬ

ℰ1 ℰ2

ℬ ℬ

We want to define 𝜈𝐹 : 𝑝−1 → 𝑞−1. Let 𝑋 : ℬ,

𝜈𝐹
𝑋 : 𝑝−1(𝑋) ⟶ 𝑞−1(𝑋)

𝑆 ⟼ 𝐹(𝑆)
𝑓 ⟼ 𝐹(𝑓)

Which is well defined because, if 𝑝(𝑆) = 𝑋, then

𝑞(𝐹(𝑆)) = 𝑝(𝑆) = 𝑋

and if 𝑓 : 𝑆 → 𝑅 is in the fiber above 𝑋, then

– 𝜔 + 60 –

Appendix J Proof of Theorem A.3.1

𝑞(𝐹(𝑓)) = 𝑝(𝑓) = id𝑋

so 𝐹(𝑓) also lives in the fiber above 𝑋. 𝜈𝐹
𝑋 is clearly functorial, because 𝐹 is.

Now, let 𝑓 : 𝑋 → 𝑌 in ℬ

𝜈𝐹
𝑓 (𝑅) : 𝑞−1

𝑓 (𝐹(𝑅)) ⟶ 𝐹(𝑝−1
𝑓 (𝑅))

is defined by noting that we have the following commuting diagram

[𝑓]𝑅

𝑓

𝑝−1
𝑓 (𝑅) 𝑅

𝑋 𝑌

and so, by cartesianity of 𝐹([𝑓]𝑅), which stems from that of [𝑓]𝑅 because 𝐹 preserves carte-
sianity,

[𝑓]𝐹(𝑅)

𝜈𝐹
𝑓 (𝑅)

𝐹([𝑓]𝑅)

𝑓

𝑞−1
𝑓 (𝐹(𝑅))

𝐹(𝑝−1
𝑓 (𝑅)) 𝐹(𝑅)

𝑋 𝑌

J.1.2.1 𝜈𝐹
𝑓 is an isomorphism

J.1.2.1.1 Naturality

Lemma J.1.2

𝜈𝐹
𝑓 is a natural transformation.

♡

Proof. Let 𝑔 : 𝑅 → 𝑆 be a morphism in 𝑝−1
𝑌 .

– 𝜔 + 61 –

Appendix J Proof of Theorem A.3.1

𝐹(𝑔)

[𝑓]𝐹(𝑅)

𝜈𝐹
𝑓 (𝑅)𝜈𝐹
𝑓 (𝑅)

𝑞−1
𝑓 (𝐹(𝑔)) 𝐹(𝑝−1

𝑓 (𝑔))

𝐹([𝑓]𝑅)

𝜈𝐹
𝑓 (𝑆)𝜈𝐹
𝑓 (𝑆)

[𝑓]𝐹(𝑆) 𝐹([𝑓]𝑅)

id𝑋

𝑓 𝑓

𝐹(𝑅)

𝑞−1
𝑓 (𝐹(𝑅)) 𝐹(𝑝−1

𝑓 (𝑅))

𝐹(𝑆)

𝑞−1
𝑓 (𝐹(𝑆)) 𝐹(𝑝−1

𝑓 (𝑆))

𝑌

𝑋 𝑋

We have to show that the upper front square commutes. This stems from the fact that 𝑞−1
𝑓 (𝐹(𝑔))

has the universal property of living in the fiber over 𝑋, and making the left-most square
commute, so we just need to check that the same is true for

𝜈𝐹
𝑓 (𝑆)−1 ∘ 𝐹(𝑝−1

𝑓 (𝑔)) ∘ 𝜈𝐹
𝑓 (𝑅)

which is true because the two triangles and the right-most square commute in the above
diagram. □

J.1.2.1.2 Coherences

Lemma J.1.3

𝜈𝐹 is a morphism.
♡

Proof. We have shown that, for any 𝑓 , 𝜈𝐹
𝑓 is a natural transformation. We just have to check

that 𝜈𝐹 satisfies the coherence conditions.

• Let 𝑋 : ℬ. Let 𝑅 : 𝑝−1
𝑋 . We have to check that

id𝜈𝑋(𝑅) = (𝜈𝐹
𝑋([id𝑋]𝑅)) ∘ 𝜈𝐹

id𝑋
(𝑅) ∘ [id𝑋]−1

𝜈𝑋(𝑅)

that is,

[id𝑋]𝐹(𝑅) = 𝐹([id𝑋]𝑅) ∘ 𝜈𝐹
id𝑋

(𝑅)

which is, in diagrammatic form,

– 𝜔 + 62 –

Appendix J Proof of Theorem A.3.1

𝜈𝐹
id𝑋

(𝑅)
[id𝑋]𝐹(𝑅)

𝐹([id𝑋]𝑅)

𝑞−1
id𝑋

(𝐹(𝑅))

𝐹(𝑝−1
id𝑋

(𝑅)) 𝐹(𝑅)

the commutation of this diagram is exactly the definition of 𝜈𝐹
id𝑋

(𝑅).
• Let 𝑋, 𝑌 , 𝑍 : ℬ be three objects, 𝑓 : 𝑋 → 𝑌 and 𝑔 : 𝑌 → 𝑍 be two morphisms in ℬ. Let 𝑅 :

𝑝−1
𝑍 . We have to check that

𝜈𝐹
𝑔∘𝑓(𝑅) = 𝜈𝐹

𝑋([𝑓, 𝑔]−1
𝑅) ∘ 𝜈𝐹

𝑓 (𝑝−1
𝑔 (𝑅)) ∘ 𝑞−1

𝑓 (𝜈𝐹
𝑔 (𝑅)) ∘ [𝑓, 𝑔]′𝜈𝐹

𝑍 (𝑅)

that is, that the following diagram commutes

[𝑓, 𝑔]′𝜈𝐹
𝑍 (𝑅)

𝜈𝐹
𝑔∘𝑓(𝑅)

𝑞−1
𝑓 (𝜈𝐹

𝑔 (𝑅))

𝜈𝐹
𝑓 (𝑝−1

𝑔 (𝑅))

𝐹([𝑓, 𝑔]𝑅)

𝑞−1
𝑔∘𝑓(𝐹(𝑅)) 𝑞−1

𝑓 (𝑞−1
𝑔 (𝐹(𝑅)))

𝑞−1
𝑓 (𝐹(𝑝−1

𝑔 (𝑅)))

𝐹(𝑝−1
𝑔∘𝑓(𝑅)) 𝐹(𝑝−1

𝑓 (𝑝−1
𝑔 (𝑅)))

𝜈𝐹
𝑔∘𝑓(𝑅) is defined as the unique map in the fiber above 𝑋 that makes the following diagram

commute

𝜈𝐹
𝑓 (𝑅)

[𝑔 ∘ 𝑓]𝐹(𝑅)

𝐹([𝑔 ∘ 𝑓]𝑅)

𝑞−1
𝑔∘𝑓(𝐹(𝑅))

𝐹(𝑝−1
𝑔∘𝑓(𝑅)) 𝐹(𝑅)

Hence, we just need to show that the following diagram commutes

– 𝜔 + 63 –

Appendix J Proof of Theorem A.3.1

[𝑔 ∘ 𝑓]𝐹(𝑅)

[𝑓, 𝑔]′𝐹(𝑅)

𝑞−1
𝑓 (𝜈𝐹

𝑔 (𝑅))

𝐹([𝑔 ∘ 𝑓]𝑅)

𝜈𝐹
𝑓 (𝑝−1

𝑔 (𝑅))

𝐹([𝑓, 𝑔]−1
𝑅)

𝑞−1
𝑔∘𝑓(𝐹(𝑅)) 𝐹(𝑅)

𝑞−1
𝑓 (𝑞−1

𝑔 (𝐹(𝑅))) 𝐹(𝑝−1
𝑔∘𝑓(𝑅))

𝑞−1
𝑓 (𝐹(𝑝−1

𝑔 (𝑅))) 𝐹(𝑝−1
𝑓 (𝑝−1

𝑔 (𝑅)))

Indeed, we can fill it with commuting diagrams as follows

[𝑔 ∘ 𝑓]𝐹(𝑅)

[𝑓, 𝑔]′𝐹(𝑅)

𝜈𝐹
𝑔 (𝑅)

[𝑔]𝐹(𝑅)

𝑞−1
𝑓 (𝜈𝐹

𝑔 (𝑅))

[𝑓]𝑞−1
𝑔 (𝐹(𝑅))

𝐹([𝑔]𝑅)
𝐹([𝑔 ∘ 𝑓]𝑅)

[𝑓]𝐹(𝑝−1
𝑔 (𝑅))

𝜈𝐹
𝑓 (𝑝−1

𝑔 (𝑅))

𝐹([𝑓, 𝑔]−1
𝑅)

𝐹([𝑓]𝑝−1
𝑔 (𝑅))

𝑞−1
𝑔∘𝑓(𝐹(𝑅)) 𝐹(𝑅)

𝑞−1
𝑔 (𝐹(𝑅))

𝑞−1
𝑓 (𝑞−1

𝑔 (𝐹(𝑅))) 𝐹(𝑝−1
𝑔 (𝑅)) 𝐹(𝑝−1

𝑔∘𝑓(𝑅))

𝑞−1
𝑓 (𝐹(𝑝−1

𝑔 (𝑅))) 𝐹(𝑝−1
𝑓 (𝑝−1

𝑔 (𝑅)))

 □

J.1.2.1.3 Iso

Lemma J.1.4

𝜈𝐹
𝑓 (𝑅) is an isomorphism.

♡

Proof. This stems from the fact that [𝑓]𝐹(𝑅) is cartesian. □

We therefore define

Φ(𝐹) = 𝜈𝐹

– 𝜔 + 64 –

Appendix J Proof of Theorem A.3.1

J.2 Grothendieck construction
In this section, we will define a functor Ψ : Pfctℬ → Fibℬ.

J.2.1 Action of Ψ on objects
Let 𝒫 : ℬop → Cat be a pseudo-functor. Let’s build a fibration over 𝐵 out of it.

Definition J.2.1 (Total category)

The total category ∫ 𝒫 has

• objects: pairs (𝑋, 𝑥) with 𝑋 : ℬop and 𝑥 : 𝒫𝑋;

• morphisms between two objects (𝐴, 𝑎) and (𝐵, 𝑏): pairs (𝑓1, 𝑓2) with 𝑓1 : 𝐴 → 𝐵 in ℬ
and 𝑓2 : 𝑎 → 𝒫𝑓1

(𝑏).

• identities for (𝑋, 𝑥) : ∫ 𝒫: (id(𝑋,𝑥))0
= id𝑋 and

(id(𝑋,𝑥))1
: 𝑥 ⟶ 𝒫id𝑋

(𝑥)

(id(𝑋,𝑥))1
= 𝑖−1

𝑋 (𝑥)

• composition, given (𝐴, 𝑎), (𝐵, 𝑏), (𝐶, 𝑐) : ∫ 𝒫, (𝑓1, 𝑓2) : (𝐴, 𝑎) → (𝐵, 𝑏) and (𝑔1, 𝑔2) :
(𝐵, 𝑏) → (𝐶, 𝑐): (ℎ1, ℎ2) = (𝑔1, 𝑔2) ∘ (𝑓1, 𝑓2) by
‣ ℎ1 : 𝐴 → 𝐶 = 𝑔1 ∘ 𝑓1
‣ ℎ2 : 𝑎 → 𝒫𝑔1∘𝑓1

(𝑐) by

𝑓2 𝒫𝑓1
(𝑔2) 𝑐−1

𝑓1,𝑔1
(𝑐)

𝑎 𝒫𝑓1
(𝑏) 𝒫𝑓1

(𝒫𝑔1
(𝑐)) 𝒫𝑔1∘𝑓1

(𝑐)
♣

Lemma J.2.2

Let 𝑓 be an isomorphism in ∫ 𝒫. 𝑓1 and 𝑓2 are invertible.
♡

Proof. Let (𝑓1, 𝑓2) : (𝐴, 𝑎) → (𝐵, 𝑏) a morphism in ∫ 𝒫, and (𝑔1, 𝑔2) : (𝐵, 𝑏) → (𝐴, 𝑎) such that

(𝑓1, 𝑓2) ∘ (𝑔1, 𝑔2) = id𝐵,𝑏

(𝑔1, 𝑔2) ∘ (𝑓1, 𝑓2) = id𝐴,𝑎

We have that 𝑓1 ∘ 𝑔1 = id𝐵 and 𝑔1 ∘ 𝑓1 = id𝐴, so 𝑓1 is invertible and 𝑓−1
1 = 𝑔1.

Furthermore, the following diagram commute

𝑖𝐴(𝑎)−1

𝑓2

𝒫𝑓1
(𝑔2)

𝑐𝑓1,𝑓−1
1

(𝑎)−1

𝑎 𝒫id𝐴
(𝑎)

𝒫𝑓1
(𝑏) 𝒫𝑓1

(𝒫𝑓−1
1

(𝑎))

So we have a candidate for the inverse of 𝑓2, namely,

𝑓2 ≔ 𝑖𝐴(𝑎) ∘ 𝑐−1
𝑓1,𝑓−1

1
(𝑎) ∘ 𝒫𝑓1

(𝑔2)

– 𝜔 + 65 –

Appendix J Proof of Theorem A.3.1

because the diagram above states that 𝑓2 ∘ 𝑓2 = id𝑎. Furthermore, the following diagram
commutes

𝑖𝐵(𝑏)−1

𝑔2

𝒫𝑓−1
1

(𝑓2)

𝑐−1
𝑓−1

1 ,𝑓1
(𝑏)

𝑏 𝒫id𝐵
(𝑏)

𝒫𝑓−1
1

(𝑎) 𝒫𝑓−1
1

(𝒫𝑓1
(𝑏))

Hence so does its image by 𝒫𝑓1

𝒫𝑓1
(𝑖𝐵(𝑏)−1)

𝒫𝑓1
(𝑔2)

𝒫𝑓1
(𝒫𝑓−1

1
(𝑓2))

𝒫𝑓1
(𝑐−1

𝑓−1
1 ,𝑓1

(𝑏))

𝒫𝑓1
(𝑏) 𝒫𝑓1

(𝒫id𝐵
(𝑏))

𝒫𝑓1
(𝒫𝑓−1

1
(𝑎)) 𝒫𝑓1

(𝒫𝑓−1
1

(𝒫𝑓1
(𝑏)))

Thus the following diagram commutes (the other inner squares/triangles are coherence condi-
tions)

𝒫𝑓1
(𝑖𝐵(𝑏))−1

𝒫𝑓1
(𝑔2)

id𝒫𝑓1(𝑏)

𝒫𝑓1
(𝑐𝑓−1

1 ,𝑓1
(𝑏))

𝑐−1
𝑓1, id𝐵

𝑐id𝐴,𝑓1
(𝑏)

id𝒫𝑓1(𝑏)

𝒫𝑓1
(𝒫𝑓−1

1
(𝑓2))

𝑐𝑓1,𝑓−1
1

(𝑎)−1 𝑐𝑓1,𝑓−1
1

(𝒫𝑓1
(𝑏))

−1

𝒫id𝐴
(𝑓2)

𝑖𝐴(𝑎) 𝑖𝐴(𝒫𝑓1
(𝑏))

𝑓2

𝒫𝑓1
(𝑏) 𝒫𝑓1

(𝒫id𝐵
(𝑏)) 𝒫𝑓1

(𝑏)

𝒫𝑓1
(𝒫𝑓−1

1
(𝑎)) 𝒫𝑓1

(𝒫𝑓−1
1

(𝒫𝑓1
(𝑏)))

𝒫id𝐴
(𝑎) 𝒫id𝐴

(𝒫𝑓1
(𝑏))

𝑎 𝒫𝑓1
(𝑏)

the outermost diagram states precisely

𝑓2 ∘ 𝑓2 = id𝒫𝑓1(𝑏)

 □

– 𝜔 + 66 –

Appendix J Proof of Theorem A.3.1

Definition J.2.3 (Forgetful fibration)

We can now define the forgetful fibration

𝜋(𝒫) : ∫ 𝒫 ⟶ ℬ

(𝐴, 𝑎) ⟼ 𝐴
(𝑓1, 𝑓2) ⟼ 𝑓1

which is clearly functorial.
♣

Lemma J.2.4

The forgetful fibration is a fibration.
♡

Proof. Let 𝐴, 𝐵 : ℬ, 𝑓 : 𝐴 → 𝐵 and 𝑏 : 𝒫𝐵, ie we have the following diagram:

𝑓

(𝐵, 𝑏)

𝐴 𝐵

We can lift 𝑓 as

(𝑓, id𝒫𝑓(𝑏))

𝑓

(𝐴, 𝒫𝑓(𝑏)) (𝐵, 𝑏)

𝐴 𝐵

Hence, we just have to show that (𝑓, id𝒫𝑓(𝑏)) is cartesian. Let 𝑋 : ℬ, 𝑥 : 𝑋, (𝑔1, 𝑔2) : (𝑋, 𝑥) →
(𝐵, 𝑏) and ℎ : 𝑋 → 𝐴 such that 𝑔1 = 𝑓 ∘ ℎ:

𝑔1
ℎ

𝑓

𝑋

𝐴 𝐵

We have to show there is a unique ℎ̂ : 𝑥 → 𝒫ℎ(𝒫𝑓(𝑏)) with

𝑔2

ℎ̂

𝒫ℎ(id𝒫𝑓(𝑏))

𝑐−1
𝑓,𝑔(𝑏)

𝑥 𝒫𝑔1
(𝑏)

𝒫ℎ(𝒫𝑓(𝑏)) 𝒫𝑓(𝒫ℎ(𝑏))

which is equivalent to the following diagram commuting

– 𝜔 + 67 –

Appendix J Proof of Theorem A.3.1

ℎ̂

𝑔2

𝑐𝑓,𝑔(𝑏)

𝒫ℎ(𝒫𝑓(𝑏))

𝑥 𝒫𝑔1
(𝑏)

but it is obvious that there is exactly one ℎ̂ that makes this commute, namely,

ℎ̂ = 𝑐𝑓,𝑔(𝑏) ∘ 𝑔2

 □

Lemma J.2.5

Let (𝑓1, 𝑓2) be a cartesian morphism in ∫ 𝒫. 𝑓2 is an isomorphism.
♡

Proof. Let (𝑓1, 𝑓2) : (𝐴, 𝑎) → (𝐵, 𝑏) be a cartesian morphism. In the previous proof, we have
established that (𝑓1, id𝒫𝑓1(𝑏)) is cartesian. Hence, there exists a unique isomorphism (id𝐴, 𝜑)
making the following diagram commute

(𝑓1, id𝒫𝑓1(𝑏))
(id𝐴, 𝜑)

(𝑓1, 𝑓2)

(𝐴, 𝒫𝑓1
(𝑏))

(𝐴, 𝑎) (𝐵, 𝑏)

hence the top square of this diagram commutes

𝜑

id𝒫𝑓1(𝑏)

𝑐id𝐴,𝑓1

id𝒫𝑓1(𝑏)

𝒫id𝐴
(𝑓2)

𝑖𝐴(𝑎) 𝑖𝐴(𝒫𝑓1
(𝑏))

𝑓2

𝒫𝑓1
(𝑏) 𝒫𝑓1

(𝑏)

𝒫id𝐴
(𝑎) 𝒫id𝐴

(𝒫𝑓1
(𝑏))

𝑎 𝒫𝑓1
(𝑏)

the lower square commutes by naturality of 𝑖𝐴, and the triangle commutes by a coherence
condition. Therefore,

𝑓2 ∘ 𝑖𝐴(𝑎) ∘ 𝜑 = id𝒫𝑓1(𝑏)

By Lemma J.2.2, (id𝐴, 𝜑) is an isomorphism, so 𝜑 is too and hence

𝑓2 = (𝑖𝐴(𝑎) ∘ 𝜑)−1

– 𝜔 + 68 –

Appendix J Proof of Theorem A.3.1

so 𝑓2 is an isomorphism. □

Lemma J.2.6

Let (𝑓1, 𝑓2) be a morphism in ∫ 𝒫, with 𝑓2 an isomorphism. (𝑓1, 𝑓2) is cartesian.
♡

Proof. Let (𝑓1, 𝑓2) : (𝑋, 𝑥) → (𝑌 , 𝑦), with 𝑓2 : 𝑥 → 𝒫𝑓1
(𝑦) an isomorphism, (𝑔1, 𝑔2) : (𝑍, 𝑧) →

(𝑌 , 𝑦) and ℎ : 𝑍 → 𝑋 such that 𝑔1 = 𝑓1 ∘ ℎ. We want to find a unique ℎ̂ : 𝑧 → 𝒫ℎ(𝑥) such that
(𝑔1, 𝑔2) = (𝑓1, 𝑓2) ∘ (ℎ, ℎ̂), which is equivalent to the commutation of the following diagram

ℎ̂

𝑔2

𝑐ℎ,𝑓1
(𝑦)

𝒫ℎ(𝑓2)

𝑧 𝒫𝑔1
(𝑦)

𝒫ℎ(𝑥) 𝒫ℎ(𝒫𝑓1
(𝑦))

Since 𝑓2 is an iso, it is clear that there is a unique ℎ̂ making the above diagram commute. □

We thus define Ψ on objects by

Ψ(𝒫) = (∫ 𝒫, 𝜋(𝒫))

J.2.2 Action of Ψ on morphisms
Let 𝒫, 𝒫′ be two pseudo-functors, and 𝜈 : 𝒫 → 𝒫′ a morphism in Pfctℬ.

Definition J.2.7

Let

𝐹𝜈 : ∫ 𝒫 ⟶ ∫ 𝒫′

(𝑋, 𝑥) ⟼ (𝑋, 𝜈𝑋(𝑥))

(𝑓1, 𝑓2) ⟼ (𝑓1, 𝜈𝑓1
(𝑏)−1 ∘ 𝜈𝑋(𝑓2))

That is, for (𝑓1, 𝑓2) : (𝐴, 𝑎) → (𝐵, 𝑏), we have

𝜈𝐴(𝑓2)

(𝐹𝜈(𝑓1, 𝑓2))2

𝜈𝑓1
(𝑏)−1

𝜈𝑋(𝑎) 𝜈𝐴(𝒫𝑓1
(𝑏))

𝒫′
𝑓1

(𝜈𝐵(𝑏))
♣

Lemma J.2.8

– 𝜔 + 69 –

Appendix J Proof of Theorem A.3.1

𝐹𝜈 is a fibration morphism
♡

Proof. We have to show that it makes the following diagram commute

𝜋(𝒫)

𝐹𝜈

𝜋(𝒫′)

id𝐵

∫ 𝒫 ∫ 𝒫′

ℬ ℬ

and that 𝐹𝜈 preserves the cartisian morphisms.
• Let’s show the two functors agree:

‣ on objects: let (𝑋, 𝑥) : ∫ 𝒫,

𝜋(𝒫′)(𝐹𝜈(𝑋, 𝑥)) = 𝜋(𝒫′)(𝑋, 𝜈𝑋(𝑥))
= 𝑋
= 𝜋(𝒫)(𝑋, 𝑥)

‣ on morphisms: let (𝑓1, 𝑓2) : (𝐴, 𝑎) → (𝐵, 𝑏),

𝜋(𝒫′)(𝐹𝜈(𝑓1, 𝑓2)) = 𝜋(𝒫′)((𝑓1, 𝜈𝑓1
(𝑏)−1 ∘ 𝜈𝐴(𝑓2)))

= 𝑓1

= 𝜋(𝒫)(𝑓1, 𝑓2)

Hence the diagram commutes.
• Let (𝑓1, 𝑓2) : (𝐴, 𝑎) → (𝐵, 𝑏) be a cartesian morphism in ∫ 𝒫. Let (𝑔1, 𝑔2) : (𝐶, 𝑐) →

(𝐵, 𝜈𝐵(𝑏)) be a morphism in ∫ 𝒫′ and ℎ1 : 𝐶 → 𝐵 in ℬ such that the following diagram
commutes

ℎ1

𝑔1

𝑓1

𝐶

𝐴 𝐵

Let’s show that there exists a unique ℎ2 : 𝑐 → 𝒫′
ℎ1

(𝑎) such that

– 𝜔 + 70 –

Appendix J Proof of Theorem A.3.1

(𝑔1, 𝑔2)
(ℎ1, ℎ2)

(𝑓1, 𝜈𝑓1
(𝑏)−1 ∘ 𝜈𝐴(𝑓2))

(𝐶, 𝑐)

(𝐴, 𝜈𝐴(𝑎)) (𝐵, 𝜈𝐵(𝑏))

that is

𝑔2

ℎ2

𝑐′
ℎ1,𝑓1

(𝜈𝐵(𝑏))

𝒫′
ℎ1

(𝜈𝑓1
(𝑏))

𝒫′
ℎ1

(𝜈𝐴(𝑓2))

𝑐 𝒫′
𝑔1

(𝜈𝐵(𝑏))

𝒫′
ℎ1

(𝒫′
𝑓1

(𝜈𝐵(𝑏)))

𝒫′
ℎ1

(𝜈𝐴(𝑎)) 𝒫′
ℎ1

(𝜈𝐴(𝒫𝑓1
(𝑏)))

By Lemma J.2.5, 𝑓2 is an isomorphism, hence the commutation of the latter diagram is
equivalent to that of the following, for which there clearly exists a unique ℎ2

𝑔2

ℎ2

𝑐′
ℎ1,𝑓1

(𝜈𝐵(𝑏))

𝒫′
ℎ1

(𝜈𝑓1
(𝑏))

𝒫′
ℎ1

(𝜈𝐴(𝑓−1
2))

𝑐 𝒫′
𝑔1

(𝜈𝐵(𝑏))

𝒫′
ℎ1

(𝒫′
𝑓1

(𝜈𝐵(𝑏)))

𝒫′
ℎ1

(𝜈𝐴(𝑎)) 𝒫′
ℎ1

(𝜈𝐴(𝒫𝑓1
(𝑏)))

 □

J.3 The equivalence

J.3.1 Φ ∘ Ψ
Let 𝒫 : ℬop → Cat be a pseudo-functor.

Definition J.3.1

– 𝜔 + 71 –

Appendix J Proof of Theorem A.3.1

Consider

𝐻𝒫 : 𝜋(𝒫)−1 ⟶ 𝒫

defined by, for 𝑋 : ℬ,

𝐻𝒫
𝑋 : 𝜋(𝒫)−1

𝑋 ⟶ 𝒫𝑋

(𝑋, 𝑥) ⟼ 𝑥
(id𝑋, 𝑓) ⟼ 𝑖𝑋(𝑏) ∘ 𝑓

Let (id𝑋, 𝑓) : (𝑋, 𝑎) → (𝑋, 𝑏) in 𝜋(𝒫)−1
𝑋 , that is, 𝑓 : 𝑎 → 𝒫id𝑋

(𝑏). We have

𝑓

𝐻𝒫
𝑋(id𝑋, 𝑓)

𝑖𝑋(𝑏)

𝑎 𝒫id𝑋
(𝑏)

𝑏
♣

Lemma J.3.2

For 𝑋 : ℬ, 𝐻𝒫
𝑋 is a functor.

♡

Proof. Let (𝑋, 𝑥) : 𝜋(𝒫)−1
𝑋 . id𝑋,𝑥 = (id𝑋, 𝑖−1

𝑋 (𝑥)), and so

𝐻𝒫
𝑋(id𝑋,𝑥) = 𝑖𝑋(𝑥) ∘ 𝑖−1

𝑋 (𝑥)

= id𝑥

Furthermore, for (𝑋, 𝑎), (𝑋, 𝑏), (𝑋, 𝑐) : 𝜋(𝒫)−1
𝑋 and (id𝑋, 𝑓) : (𝑋, 𝑎) → (𝑋, 𝑏) and (id𝑋, 𝑓) :

(𝑋, 𝑏) → (𝑋, 𝑐),

𝐻𝒫
𝑋((id𝑋, 𝑔) ∘ (id𝑋, 𝑓)) = 𝐻𝒫

𝑋(id𝑋, 𝑐−1
id𝑋, id𝑋

(𝑐) ∘ 𝒫id𝑋
(𝑔) ∘ 𝑓)

= 𝑖𝑋(𝑐) ∘ 𝑐−1
id𝑋, id𝑋

(𝑐) ∘ 𝒫id𝑋
(𝑔) ∘ 𝑓

– 𝜔 + 72 –

Appendix J Proof of Theorem A.3.1

𝑓

𝒫id𝑋
(𝑔)

𝑖𝑋(𝑏)

𝑔

𝑐−1
id𝑋, id𝑋

𝑖𝑋(𝒫id𝑋
(𝑐))

𝑖𝑋(𝑐)

𝑖𝑋(𝑐)

id𝒫id𝑋
(𝑐)

𝑎

𝒫id𝑋
(𝑏) 𝑏

𝒫id𝑋
(𝒫id𝑋

(𝑐)) 𝒫id𝑋
(𝑐)

𝒫id𝑋
(𝑐) 𝑐

the lower right triangle commutes trivially, the triangle above commutes by a composition/
identity coherence, and the square above by naturality of 𝑖𝑋. The outer diagram shows that

𝑖𝑋(𝑐) ∘ 𝑐−1
id𝑋, id𝑋

(𝑐) ∘ 𝒫id𝑋
(𝑔) ∘ 𝑓 = (𝑖𝑋(𝑐) ∘ 𝑔)⏟⏟⏟⏟⏟

=𝐻𝒫
𝑋(id𝑋,𝑔)

∘ (𝑖𝑋(𝑏) ∘ 𝑓)⏟⏟⏟⏟⏟
=𝐻𝒫

𝑋(id𝑋,𝑓)

 □

Lemma J.3.3

𝐻𝒫 is a morphism in Pfctℬ.
♡

Proof. Let 𝑓 : 𝑋 → 𝑌 in ℬ, let’s show that there is a natural isomorphism

𝐻𝒫
𝑌

𝜋(𝒫)−1
𝑓 𝒫𝑓

𝜂𝑓

𝐻𝒫
𝑋

𝜋(𝒫)−1
𝑌 𝒫𝑌

𝜋(𝒫)−1
𝑋 𝒫𝑋

Let (𝑌 , 𝑦) : 𝜋(𝒫)−1
𝑌 , that is, 𝑦 : 𝒫𝑌 . We have

[𝑓]𝑌 ,𝑦

𝑓

𝜋(𝒫)−1
𝑓 (𝑌 , 𝑦) (𝑌 , 𝑦)

𝑋 𝑌

We can write [𝑓]𝑌 ,𝑦 = (𝑓, 𝜂𝑓(𝑦)) with 𝜂𝑓(𝑦) : 𝐻𝒫
𝑋(𝜋(𝒫)−1

𝑓 (𝑌 , 𝑦)) → 𝒫𝑓(𝑦).

– 𝜔 + 73 –

Appendix J Proof of Theorem A.3.1

Let’s prove that 𝜂𝑓 is natural, and that it is an isomorphism.
• let 𝑦, 𝑦′ : 𝒫𝑌 and 𝑔 : 𝑦 → 𝑦′. We want to show the the following diagram commutes

𝜂𝑓(𝑦)

𝐻𝒫
𝑋(𝜋(𝒫)−1

𝑓 (id𝑌 , 𝑔)) 𝒫𝑓(𝐻𝒫
𝑌 (id𝑌 , 𝑔))

𝜂𝑓(𝑦′)

𝐻𝒫
𝑋(𝜋(𝒫)−1

𝑓 (𝑌 , 𝑦)) 𝒫𝑓(𝑦)

𝐻𝒫
𝑋(𝜋(𝒫)−1

𝑓 (𝑌 , 𝑦′)) 𝒫𝑓(𝑦′)

We have that the following diagram commutes

[𝑓]𝑌 ,𝑦′

[𝑓]𝑌 ,𝑦

𝜋(𝒫)−1
𝑓 (id𝑌 , 𝑔)

(id𝑌 , 𝑔)

𝑓

𝜋(𝒫)−1
𝑓 (𝑌 , 𝑦′) (𝑌 , 𝑦′)

𝜋(𝒫)−1
𝑓 (𝑌 , 𝑦) (𝑌 , 𝑦)

𝑋 𝑌

We can write 𝜋(𝒫)−1
𝑓 (id𝑌 , 𝑔) = (id𝑌 , ℎ), and so the commutation of the square implies the

following commutation on the second component of the morphisms

– 𝜔 + 74 –

Appendix J Proof of Theorem A.3.1

𝜂𝑓(𝑦)

ℎ 𝒫𝑓(𝑔)

𝒫id𝑋
(𝜂𝑓(𝑦′))

𝑖𝑋(𝐻𝒫
𝑋(𝜋(𝒫−1

𝑓 (𝑌 , 𝑦′))))

𝑐−1
𝑓, id𝑋

𝒫𝑓(𝑖𝑋(𝑦′))
𝑐−1
id𝑋,𝑓(𝑦′)

𝑖𝑋(𝒫𝑓(𝑦′))
id𝒫𝑓(𝑦′)

𝜂𝑓(𝑦′)

𝐻𝒫
𝑋(𝜋(𝒫)−1

𝑓 (𝑌 , 𝑦)) 𝒫𝑓(𝑦)

𝒫id𝑋(𝐻𝒫
𝑋(𝜋(𝒫−1

𝑓 (𝑌 ,𝑦′))))
𝒫𝑓(𝒫id𝑌

(𝑦′))

𝒫id𝑋
(𝒫𝑓(𝑦′)) 𝒫𝑓(𝑦′)

𝐻𝒫
𝑋(𝜋(𝒫)−1

𝑓 (𝑌 , 𝑦′)) 𝒫𝑓(𝑦′)

the two triangles commute by a composition/identity coherence, while the left square is the
naturality of 𝑖𝑋. Note that the outermost diagram is exactly the one we were looking for,
showing that 𝜂𝑓 is natural.

• (𝑓, 𝜂𝑓(𝑦)) = [𝑓]𝑌 ,𝑦 is cartesian (by definition of [−]−), hence, by Lemma J.2.5, 𝜂𝑓(𝑦) is an
isomorphism, showing that 𝜂𝑓 is a natural isomorphism.

 □

Lemma J.3.4

𝐻𝒫 is an isomorphism.
♡

Proof. To show that 𝐻𝒫 is a pseudo-natural isomorphism, it is enough to show that each of
its components is an isomorphism. Let 𝑋 : ℬ. It is clear that both actions on objects and on
morphisms of 𝐻𝒫

𝑋 are invertible. □

Lemma J.3.5

𝐻𝒫 is natural in 𝒫.
♡

Proof. Let 𝒫, 𝒫′ : ℬop → Cat be two pseudo-functors, and 𝜈 : 𝒫 → 𝒫′ be a pseudo-natural
transformation. We have to show that

𝜈𝐹𝜈

𝐻𝒫

𝜈

𝐻𝒫′

𝜋(𝒫)−1 𝒫

𝜋(𝒫′−1) 𝒫′

– 𝜔 + 75 –

Appendix J Proof of Theorem A.3.1

Hence, we have to show that the diagram commutes at each point 𝑋 : ℬ

𝜈𝐹𝜈
𝑋

𝐻𝒫
𝑋

𝜈𝑋

𝐻𝒫′

𝑋

𝜋(𝒫)−1
𝑋 𝒫𝑋

𝜋(𝒫′−1
𝑋) 𝒫′

𝑋

Let’s check that the functor agree on each object and morphisms:
• let 𝑥 : 𝒫𝑋.

𝐻𝒫′
𝑋(𝜈𝐹𝜈

𝑋 (𝑋,𝑥)) = 𝐻𝒫′

𝑋 (𝐹𝜈(𝑋, 𝑥))

= 𝐻𝒫′

𝑋 (𝑋, 𝜈𝑋(𝑥))
= 𝜈𝑋(𝑥)

= 𝜈𝑋(𝐻𝒫
𝑋(𝑋, 𝑥))

• let 𝑥, 𝑦 : 𝒫𝑋, and 𝑓 : 𝑥 → 𝒫id𝑋
(𝑦).

𝜈𝑋(𝐻𝒫
𝑋(id𝑋, 𝑓)) = 𝜈𝑋(𝑖𝑋(𝑦) ∘ 𝑓)

= 𝜈𝑋(𝑖𝑋(𝑦)) ∘ 𝜈𝑋(𝑓)

and

𝐻𝒫′

𝑋 (𝜈𝐹𝜈
𝑋 (id𝑋, 𝑓)) = 𝐻𝒫′

𝑋 (𝐹𝜈(id𝑋, 𝑓))

= 𝐻𝒫′

𝑋 (id𝑋, 𝜈id𝑋
(𝑦)−1 ∘ 𝜈𝑋(𝑓2))

= 𝑖𝑋(𝜈𝑋(𝑦)) ∘ 𝜈id𝑋
(𝑦)−1 ∘ 𝜈𝑋(𝑓)

We need to check that the following diagram commutes

𝜈𝑋(𝑓)

𝜈𝑋(𝑓)

𝜈𝑋(𝑖𝑋(𝑦))

𝜈id𝑋
(𝑦)−1

id𝜈𝑋(𝒫id𝑋
(𝑦))

𝑖′𝑋(𝜈𝑋(𝑦))

𝜈𝑋(𝑎) 𝜈𝑋(𝒫id𝑋
(𝑦))

𝜈𝑋(𝒫id𝑋
(𝑦))

𝒫id𝑋
(𝜈𝑋(𝑦)) 𝜈𝑋(𝑦)

note that the lower square commutes by a coherence condition on pasting diagrams, and the
upper triangle trivially commutes.

 □

Lemma J.3.6

– 𝜔 + 76 –

Appendix J Proof of Theorem A.3.1

Φ ∘ Ψ ≅ idPfctℬ
♡

Proof. We have exhibited a natural isomorphism

𝐻 : Φ ∘ Ψ ⟹ idPfctℬ

 □

J.3.2 Ψ ∘ Φ
Let 𝑝 : ℰ → ℬ be a fibration.

Ψ ∘ Φ(𝑝) = 𝜋(𝑝−1) : ∫ 𝑝−1 → ℬ

Definition J.3.7

Consider

𝐺𝑝 : ∫ 𝑝−1 ⟶ ℰ

(𝑋, 𝑅) ⟼ 𝑅
(𝑓1, 𝑓2) ⟼ [𝑓1]𝑅 ∘ 𝑓2

Let (𝑓1, 𝑓2) : (𝑋, 𝑆) → (𝑌 , 𝑅), we have 𝑓1 : 𝑋 → 𝑌 and 𝑓2 : 𝑆 → 𝑝−1
𝑓1

(𝑅)

𝑓2 [𝑓1]𝑅

id𝑋 𝑓1

𝑆 𝑝−1
𝑓1

(𝑅) 𝑅

𝑋 𝑋 𝑌
♣

Lemma J.3.8

𝐺𝑝 is a functor.
♡

Proof. Let (𝑋, 𝑅) : ∫ 𝑝−1. id𝑋,𝑅 = (id𝑋, 𝑖−1
𝑋 (𝑅)). We have to show that the following diagram

commutes

𝑖−1
𝑋 (𝑅)

id𝑅

[id𝑋]𝑅

𝑅

𝑝−1
id𝑋

(𝑅) 𝑅

which commutes by definition of 𝑖𝑋.

Furthermore, let (𝑋, 𝑅), (𝑌 , 𝑆), (𝑍, 𝑇) : ∫ 𝑝−1, and

– 𝜔 + 77 –

Appendix J Proof of Theorem A.3.1

(𝑓1, 𝑓2) : (𝑋, 𝑅) ⟶ (𝑌 , 𝑆)
(𝑔1, 𝑔2) : (𝑌 , 𝑆) ⟶ (𝑍, 𝑇)

Let us show that 𝐺𝑝((𝑔1, 𝑔2) ∘ (𝑓1, 𝑓2)) = 𝐺𝑝(𝑔1, 𝑔2) ∘ 𝐺𝑝(𝑓1, 𝑓2), that is, that the following
diagram commutes

𝑓2

𝑓2
[𝑓1]𝑆

𝑝−1
𝑓1

(𝑔2) 𝑔2

[𝑓1, 𝑔1]
−1
𝑅

[𝑔1]𝑇

[𝑔 ∘ 𝑓]𝑇

𝑅 𝑝−1
𝑓1

(𝑆)

𝑝−1
𝑓1

(𝑆) 𝑆

𝑝−1
𝑓1

(𝑝−1
𝑔1

(𝑇)) 𝑝−1
𝑔1

(𝑇)

𝑝−1
𝑔1∘𝑓1

(𝑇) 𝑇

We indeed have the following diagram commutes

𝑓2

𝑓2
[𝑓1]𝑆

[𝑓1]𝑆

𝑝−1
𝑓1

(𝑔2) 𝑔2

[𝑓1]𝑝−1
𝑔1(𝑇)

[𝑓1, 𝑔1]
−1
𝑅

[𝑔1]𝑇

[𝑔 ∘ 𝑓]𝑇

𝑅 𝑝−1
𝑓1

(𝑆)

𝑝−1
𝑓1

(𝑆) 𝑆

𝑝−1
𝑓1

(𝑝−1
𝑔1

(𝑇)) 𝑝−1
𝑔1

(𝑇)

𝑝−1
𝑔1∘𝑓1

(𝑇) 𝑇

as the lower square commutes by definition of [𝑓1, 𝑔1]𝑅, the middle one by definition of 𝑝−1
𝑓1

(𝑔2),
and the top one commutes trivially. □

Lemma J.3.9

– 𝜔 + 78 –

Appendix J Proof of Theorem A.3.1

𝐺𝑝 is a fibration morphism.
♡

Proof. There are two things to check: the commutation with the fibrations, and the preservation
of cartesian morphisms. Let’s proceed in order.
1.

𝐺𝑝

𝜋(𝑝−1) 𝑝

∫ 𝑝−1 ℰ

ℬ

Let’s check that the two functors agree on objects and morphisms.
• let (𝑋, 𝑥) : ∫ 𝑝−1, ie 𝑋 = 𝑝(𝑥)

𝑝(𝐺𝑝(𝑋, 𝑥)) = 𝑝(𝑥)

= 𝑋
= 𝜋(𝑝−1)(𝑋, 𝑥)

• let (𝑋, 𝑥), (𝑌 , 𝑦) : ∫ 𝑝−1, and (𝑓1, 𝑓2) : (𝑋, 𝑥) → (𝑌 , 𝑦). We have

𝑝(𝐺𝑝(𝑓1, 𝑓2)) = 𝑝([𝑓1]𝑦 ∘ 𝑓2)

= 𝑝([𝑓1]𝑦) ∘ 𝑝(𝑓2)

= 𝑓1 ∘ id𝑋

= 𝑓1

= 𝜋(𝑝1)(𝑓1, 𝑓2)
2. Let (𝑓1, 𝑓2) : (𝑋, 𝑆) → (𝑌 , 𝑅) be a cartesian morphism. By Lemma J.2.5, 𝑓2 is an isomor-

phism. Let ℎ : 𝑋′ → 𝑋 and 𝑔 : 𝑅′ → 𝑅 such that the following diagram commutes

𝑔

𝑓2 [𝑓1]𝑅

ℎ id𝑋 𝑓1

𝑅′

𝑆 𝑝−1
𝑓1

(𝑅) 𝑅

𝑋′ 𝑋 𝑋 𝑌

By cartesianity of [𝑓1]𝑅, there exists a unique ℎ̂ : 𝑅′ → 𝑝−1
𝑓1

(𝑅) such that the following
diagram commutes

– 𝜔 + 79 –

Appendix J Proof of Theorem A.3.1

𝑔
ℎ̂

𝑓2 [𝑓1]𝑅

ℎ id𝑋 𝑓1

𝑅′

𝑆 𝑝−1
𝑓1

(𝑅) 𝑅

𝑋′ 𝑋 𝑋 𝑌

Hence, 𝑓−1
2 ∘ ℎ̂ satisfies the wanted property. Furthermore, for any ℎ̃ : 𝑅′ → 𝑆 that makes

the following diagram commute

𝑔
ℎ̂

ℎ̃

𝑓2 [𝑓1]𝑅

ℎ id𝑋 𝑓1

𝑅′

𝑆 𝑝−1
𝑓1

(𝑅) 𝑅

𝑋′ 𝑋 𝑋 𝑌

note that 𝑓2 ∘ ℎ̃ satisfies the same universal property as ℎ̂, hence 𝑓2 ∘ ℎ̃ = ℎ̂, and thus

ℎ̃ = 𝑓−1
2 ∘ ℎ̂

which shows the unicity.

 □

Lemma J.3.10

𝐺𝑝 is an isomorphism.
♡

Proof. Let us exhibit an inverse morphism

𝐾𝑝 : ℰ ⟶ ∫ 𝑝−1

• if 𝑅 : ℰ, we define

𝐾𝑝(𝑅) = (𝑝(𝑅), 𝑅)

• if 𝑆, 𝑅 : ℰ and 𝑓 : 𝑆 ⟶ 𝑅 is a morphism in ℰ, by cartesianity of [𝑝(𝑓)]𝑅, there exists a
unique 𝑓 : 𝑆 → 𝑝−1

𝑝(𝑓)(𝑅) such that the following diagram commutes

– 𝜔 + 80 –

Appendix J Proof of Theorem A.3.1

𝑓
𝑓

[𝑝(𝑓)]𝑅

𝑝(𝑓)

𝑆

𝑝−1
𝑝(𝑓)(𝑅) 𝑅

𝑝(𝑆) 𝑝(𝑅)

Let

𝐾𝑝 = (𝑝(𝑓), 𝑓)

Let us show that 𝐾𝑝 is the inverse of 𝐺𝑝 (which will entail that it is a functor), and that it is
a fibration morphism.
1. It is clear that 𝐾𝑝 and 𝐺𝑝 are each other’s inverse on objects. Let (𝑓1, 𝑓2) be a morphism

in ∫ 𝑝−1. We have that 𝑝([𝑓1]𝑅 ∘ 𝑓2) = 𝑝([𝑓1]𝑅) ∘ 𝑝(𝑓2) = 𝑓1 ∘ id = 𝑓1. Furthermore, 𝑓2 is
precisely the cartesian lifting of the identity by [𝑓1]𝑅, so we have 𝐾𝑝(𝐺𝑝(𝑓1, 𝑓2)) = (𝑓1, 𝑓2).
Conversely, let 𝑓 : 𝑆 → 𝑅 be a morphism in ℰ. By definition of 𝑓 , we have 𝑓 = [𝑝(𝑓)] ∘ 𝑓 , so
𝐺𝑝(𝐾𝑝(𝑓)) = 𝑓 .

2. We have to check that the following diagram commutes

𝐾𝑝

𝑝 𝜋(𝑝−1)

ℰ ∫ 𝑝−1

ℬ

Let’s check that the two functors agree on objects and morphisms.
• Let 𝑅 : ℰ

𝜋(𝑝1)(𝐾𝑝(𝑅)) = 𝜋(𝑝−1)(𝑝(𝑅), 𝑅)

= 𝑝(𝑅)
• Let 𝑆, 𝑅 : ℰ and 𝑓 : 𝑆 → 𝑅 a morphism in ℰ

𝜋(𝑝−1)(𝐾𝑝(𝑓)) = 𝜋(𝑝−1)(𝑝(𝑓), 𝑓)

= 𝑝(𝑓)

Furthermore, we have to check that 𝐾𝑝 preserves cartesian morphisms. Let 𝑓 be cartesian. 𝑓
is (the canonical) isomorphism between the domains living in the same fiber, of two cartesian
morphisms. In particular, it is an isomorphism, hence (𝑝(𝑓), 𝑓) is cartesian by Lemma J.2.6.

 □

Lemma J.3.11

– 𝜔 + 81 –

Appendix J Proof of Theorem A.3.1

𝐺𝑝 is natural in 𝑝.
♡

Proof. Let 𝑝 : ℰ → ℬ and 𝑞 : ℱ → ℬ be two fibrations, and 𝐹 : 𝑝 → 𝑞 be a morphism of
fibrations. Let’s check that the following diagram commutes

𝐺𝑝

𝐹𝜈𝐹 𝐹

𝐺𝑞

∫ 𝑝−1 ℰ

∫ 𝑞−1 ℱ

Let’s check that the two functors agree on objects and morphisms. Let (𝑋, 𝑅) : ∫ 𝑝−1.

𝐺𝑞(𝐹𝜈𝐹 (𝑋, 𝑅)) = 𝐺𝑞(𝑋, 𝜈𝐹 (𝑅))

= 𝜈𝐹
𝑋(𝑅)

= 𝐹(𝑅)

= 𝐹(𝐺𝑝(𝑋, 𝑅))

Let (𝑋, 𝑅), (𝑌 , 𝑆) : ∫ 𝑝−1 and (𝑓1, 𝑓2) : (𝑋, 𝑅) → (𝑌 , 𝑆) be a morphism in ∫ 𝑝−1.

𝐺𝑞(𝐹𝜈𝐹 (𝑓1, 𝑓2)) = 𝐺𝑞(𝑓1, 𝜈𝑓𝐹
1
(𝑆)−1 ∘ 𝜈𝐹

𝑋(𝑓2))

= [𝑓1]𝐹(𝑅) ∘ 𝜈𝑓𝐹
1
(𝑆)−1 ∘ 𝜈𝐹

𝑋(𝑓2)

= [𝑓1]𝐹(𝑅) ∘ 𝜈𝑓𝐹
1
(𝑆)−1 ∘ 𝐹(𝑓2)

= 𝐹([𝑓1]𝑅) ∘ 𝐹(𝑓2)

= 𝐹([𝑓1]𝑅 ∘ 𝑓2)

= 𝐹(𝐺𝑝(𝑓1, 𝑓2))

 □

Lemma J.3.12

Ψ ∘ Φ ≅ idFibℬ
♡

Proof. We have exhibited the natural isomorphism

𝐺 : Ψ ∘ Φ ⟹ idFibℬ

 □ This concludes the proof of Theorem A.3.1.

– 𝜔 + 82 –

	Summary
	General Context
	Research problem
	Our contribution
	Arguments supporting its validity
	Summary and future work
	Outline of the document

	Syntax of the Hanaba calculus
	Definitional equality
	Contexts
	Universe
	Variables
	Function space
	Universal quantification
	Singleton type

	Semantics of the Hanaba calculus
	Models of untyped linear λ calculus
	Fibered double categories
	Foundations of Hanaba models
	Global contexts B
	Global context projection
	Global terms
	Global context extension

	Pointed contexts B∗
	Pointed terms
	Pointed context extension
	Linear structure

	Semantic type formers

	Bibliography
	Appendix
	Grothendieck fibrations
	First definitions and notations
	Some properties of fibrations
	Grothendieck construction

	Hanaba calculus
	Terms
	Rewriting rules

	Hanaba typing system
	Context formation
	Universe
	Variables
	Structural rules
	Natural numbers
	Singleton type
	Identity type
	Lollipop
	Universal quantifier
	Monoidal product
	Existential quantifier
	Bang modality
	With
	Coproduct
	Unit

	Semantic type formers
	Linear implication
	Universal quantification
	Existential quantification
	Singleton type
	Interpreting the syntax

	Summary of Hanaba model
	Chain model
	Chain-like structures
	The global context category
	The pointed context category
	Fibered double category structure
	The type category

	Proof of
	Proof of
	Proof of
	Proof of
	Fiber functor
	Action of Φ on objects
	Definition of the fibre pseudo-functor
	Pseudo identity law
	Pseudo-composition law
	Identity/composition coherence
	Upper triangle
	Lower triangle

	Composition/composition coherence

	Action of Φ on morphisms
	νFf is an isomorphism
	Naturality
	Coherences
	Iso

	Grothendieck construction
	Action of Ψ on objects
	Action of Ψ on morphisms

	The equivalence
	Φ ∘ Ψ
	Ψ ∘ Φ

